The Derivative of a Power Function

Examine the following pattern. Then complete the boxes.

У	y'
y = x	$y' = \frac{d}{dx}(x) = \boxed{}$
$y = x^2$	$y' = \frac{d}{dx}(x^2) = 2x$
$y = x^3$	$y' = \frac{d}{dx}(x^3) = 3x^2$
$y = x^4$	$y' = \frac{d}{dx}(x^4) = 4x^3$
$y = x^5$	$y' = \frac{d}{dx}(x^5) = 5x^4$
$y = x^6$	$y' = \frac{d}{dx}(x^6) = \Box x^{\Box}$
$y = x^7$	$y' = \frac{d}{dx}(x^7) = \Box x^{\Box}$
$y = x^{100}$	$y' = \frac{d}{dx} \left(x^{100} \right) = x^{\square}$
$y = x^n$	$y' = \frac{d}{dx}(x^n) = $

Examine the following pattern. Then complete the boxes.

$$\frac{1}{x} = x^{-1} \qquad y' = \frac{d}{dx} (x^{-1}) = -x^{-2} = -\frac{1}{x^2}$$

$$\frac{1}{x^2} = x^{-2} \qquad y' = \frac{d}{dx} (x^{-2}) = -2x^{-3} = -\frac{2}{x^3}$$

$$\frac{1}{x^3} = x^{-3} \qquad y' = \frac{d}{dx} (x^{-3}) = -3x^{-4} = -\frac{3}{x^4}$$

$$\frac{1}{x^4} = x^{-4} \qquad y' = \frac{d}{dx} (x^{-4}) = -4x^{-5} = -\frac{4}{x^5}$$

$$\frac{1}{x^5} = x^{-5} \qquad y' = \frac{d}{dx} (x^{-5}) = \boxed{\qquad} x^{\square} = -\frac{\square}{x^{\square}}$$

$$\frac{1}{x^{6}} = x^{-6} \qquad y' = \frac{d}{dx} (x^{-6}) = \boxed{\qquad} x^{\square} = -\frac{\square}{x^{\square}}$$

$$\frac{1}{x^{100}} = x^{-100} \qquad y' = \frac{d}{dx} (x^{-500}) = \boxed{\qquad} x^{\square} = -\frac{\square}{x^{\square}}$$