Critical Values and Critical Points of a Function

 We call point P is called a stationary point.
Formally: The two sided limit of the derivative at P is zero.
Examples of vertical tangent lines to a curve at a point P : Formally: The left sided derivative (LSD) and the right sided derivative (RSD) are infinities of the same sign or the one sided limit of the derivative at P is $\pm \infty$.

Corners and cusps have a pointy needle-like behavior and are not smooth.
(Corners and cusps make Thomas cuss. No train can travel on such tracks.)

Examples: www.geogebra.org/m/yn6xudfs\#material/ytuc47zp
$y=|x|$ at $(0,0)$
$y=\sqrt[3]{x^{2}}=x^{2 / 3}$ at $(0,0)$
Cusps vs Corners: www.wolframalpha.com/examples/mathematics/calculus-and-analysis/applications-of-calculus/cusps-a nd-corners Formally: The left sided derivative (LSD) and the right sided derivative (RSD) are not the same.

Critical values of a function $y=f(x)$ on an interval $a<x<b$ occur at values of x where its derivative is zero or undefined.

1. List the critical values on the open interval $(0,10)$ for the graph of $f(x)$ shown above : $x=$ \qquad
2. At what values of x does the graph of $f(x)$ have any horizontal tangent lines: $x=$ \qquad
vertical tangent lines at $x=$ \qquad
corners and cusps at $x=$ \qquad
3. We may also be asked to report critical points of a function, which are ordered pairs. List the critical points.
4. What makes these values (or points) earn the name critical?
