Classifying Parts of Curves
 KEY

1. Use the graphs A through F and insert the letter choice in the blank.

Some parts may have more than one answer.
(
a) Which graphs are increasing? $\mathbf{A}, \mathbf{D}, \mathbf{E}$
b) Which graphs are decreasing? $\mathbf{B}, \mathbf{C}, \mathbf{F}$
c) Which graphs are concave up? A, F
d) Which graphs are concave down? \mathbf{B}, \mathbf{E}
e) Which graphs have no concavity? C, D
f) Which graph could model the following?

In the last quarter of 2009, the economy lost jobs less quickly. $\quad \mathbf{E}, \mathbf{F}$
United States economic growth accelerates. A
The revenue is climbing at a steady rate. D
Greenland ice loss is accelerating. B
The rise in the profits is slowing. \mathbf{E}
2. The graph of a company's profit $P(t)$ in dollars at month t is shown.

Report whole numbers in the blanks below.

a) The domain of $P(t)$ is $\underline{\mathbf{0}} \leq t \leq \underline{\mathbf{3 0}}$. In interval notation, this is written $[\mathbf{0}, \mathbf{3 0}]$.
b) The range of $P(t)$ is $\mathbf{7 5} \leq P(t) \leq \mathbf{1 0 0 0}$. In interval notation, this is written $[\mathbf{7 5}, \mathbf{1 0 0 0}]$.
c) Given a function f, we say that $f(c)$ is a global maximum or absolute maximum of f provided that $f(c) \geq f(x)$ for all x in the whole domain of f.

Given a function f, we say that $f(c)$ is a global minimum or absolute minimum of f provided that $f(c) \leq f(x)$ for all x in the whole domain of f.

For what value(s) of t does $P(t)$ have the following? If none, state so.
i. an absolute maximum? at $t=\underline{0}$ "I am the highest of all, king of the hill." ii. an absolute minimum? at $t=\underline{\mathbf{1 8}}$ "I am the lowest of all, bottom of the barrel."
d) Given a function f, we say that $f(c)$ is a local maximum or relative maximum of f provided that $f(c) \geq f(x)$ for all x near c. Must have a turning point or hump.
Given a function f, we say that $f(c)$ is a local minimum or relative minimum of f provided that $f(c) \leq f(x)$ for all x near c. \quad Must have a turning point or hump.
For what value(s) of t does $P(t)$ have the following? If none, state so. Exclude endpoints here.
i. a relative maximum? at $t=\mathbf{2 8}$ "I am the highest among those in my local neighborhood (on my left and on my right)"
ii. a relative minimum? at $t=18$ "I am the lowest among those in my local neighborhood."
e) On what open intervals of t is the graph concave up and increasing? $(\mathbf{1 8 , 2 4})$

An open interval does not include its endpoints.
An interval which does include its endpoints is called closed, i.e. the answers to parts a and b .
f) For what value(s) of t does the graph change concavity? These are called the points of inflection. Report whole numbers. $t=\mathbf{6 , 1 3 , 2 4}$
g) i. For what value(s) of t does the graph change concavity and is decreasing?
$t=13$
ii. For what value(s) of t does the graph change concavity and is increasing?
$t=\underline{24}$ At $t=6$, the graph is neither decreasing or increasing.

It is called a "stationary point." (Flat like a parking lot at that point.)
h) i. On what open intervals of t is the graph concave up?
$(0,6) \cup(13,24)$
ii. On what open intervals of t is the graph concave down? $(\mathbf{6 , 1 3}) \cup(\mathbf{2 4 , 3 0})$

