Classifying Parts of Curves

1. Use the graphs A through F and insert the letter choice in the blank. Some parts may have more than one answer.

a) Which graphs are increasing? \qquad
b) Which graphs are decreasing? \qquad
c) Which graphs are concave up? \qquad
d) Which graphs are concave down? \qquad
e) Which graphs have no concavity? \qquad
f) Which graph could model the following?

In the last quarter of 2009, the economy lost jobs less quickly. \qquad
United States economic growth accelerates. \qquad
The revenue is climbing at a steady rate. \qquad
Greenland ice loss is accelerating. \qquad
The rise in the profits is slowing. \qquad
2. The graph of a company's profit $P(t)$ in dollars at month t is shown.

Report whole numbers in the blanks below.

a) The domain of $P(t)$ is \qquad $\leq t \leq$ \qquad . In interval notation, this is written \qquad .
b) The range of $P(t)$ is \qquad $\leq P(t) \leq$ \qquad . In interval notation, this is written \qquad .
c) Given a function f, we say that $f(c)$ is a global maximum or absolute maximum of f provided that $f(c) \geq f(x)$ for all x in the whole domain of f.

Given a function f, we say that $f(c)$ is a global minimum or absolute minimum of f provided that $f(c) \leq f(x)$ for all x in the whole domain of f.

For what value(s) of t does $P(t)$ have the following? If none, state so.
i. an absolute maximum? at $t=$ \qquad
ii. an absolute minimum? at $t=$ \qquad
d) Given a function f, we say that $f(c)$ is a local maximum or relative maximum of f provided that $f(c) \geq f(x)$ for all x near c.

Given a function f, we say that $f(c)$ is a local minimum or relative minimum of f provided that $f(c) \leq f(x)$ for all x near c.

For what value(s) of t does $P(t)$ have the following? If none, state so.
i. a relative maximum? at $t=$ \qquad
ii. a relative minimum? at $t=$ \qquad
e) On what open intervals of t is the graph concave up and increasing? \qquad
An open interval does not include its endpoints.
An interval which does include its endpoints is called closed, i.e. the answers to parts a and b .
f) For what value(s) of t does the graph change concavity? These are called the points of inflection. Report whole numbers. $t=$ \qquad
g) i. For what value(s) of t does the graph change concavity and is decreasing? $t=$ \qquad
ii. For what value(s) of t does the graph change concavity and is increasing? $t=$ \qquad
h) i. On what open intervals of t is the graph concave up?
ii. On what open intervals of t is the graph concave down? \qquad

