Average Rate of Change vs Instantaneous Rate of Change

The graphs give $y=x^{2}$. Sketch line segments to represent and calculate $\frac{\Delta y}{\Delta x}$, the average rate of change. Investigate the instantaneous rate of change at $(3,9)$ by exploring what $\Delta y / \Delta x$ approaches as $\Delta x \rightarrow 0$.
a. From $x=0$ to $x=3, \Delta x=-\frac{\Delta y}{\Delta x}=\square$

b. From $x=1$ to $x=3, \Delta x=-\frac{\Delta y}{\Delta x}=\square$

c. From $x=2$ to $x=3, \Delta x=$, $\frac{\Delta y}{\Delta x}=\square$

d. From $x=3$ to $x=4, \Delta x=-\frac{\Delta y}{\Delta x}=$

Secant Lines vs the Tangent Line Average Rate of Change vs Instantaneous Rate of Change

A secant line to a curve passes through two points on the curve．
The tangent line to a curve at a point P is the unique line which just barely touches the curve at P ．
Assume Thomas the Tank Engine travels along the curve at night and we view his headlights from a drone in the sky above． Then the tangent line to a curve at the point P is given by the direction of his headlights（or，more morbidly，the direction he would continue to travel if he flew off the rails．）

As you look at a smaller and smaller section of the curve，（in fact，infinitesimally small） the curve starts to more and more looks like the tangent line．We say the curve is locally linear at this point．

Use ALPHA［f1］for the stacked fraction．

Use ALPHA［f4］to select Y1．
［

Plot1 Plot2 Plot3 － Y_{1} 日 X^{2} －$\ Y_{2}$ 日 $\frac{Y_{1}(X)-Y_{1}(3)}{X-3}$

Method 1
hormal float futo real degree mp
or
－ $1 Y_{1}$ 日 X^{2}
－$Y_{2}=Y_{1}(X)-Y_{1}(3)$
－ Y $_{3}=X-3$
－ $\mathrm{NY}_{4} \mathrm{EY}_{2} / \mathrm{Y}_{3}$
Method 2

Press 2nd［ TBLSET ］
Mormal float auto real degree mp \}
TABLE SETUP
TblStart＝0 $\Delta \mathrm{Tbl}=1$
Indpnt：Auto Rsk
Depend：Ruta Rsk
Press 2nd［ TABLE ］．Find the values of Y2．Compare these with the first page．

Find the values of Y2．

The instantaneous rate of change at $x=a$ is defined to be m_{tan} ，the slope of the tangent line．
It is also called：the slope of the curve at $x=a$ or the derivative of the function evaluated at $x=a$ ．
This can be written mathematically：As $b \rightarrow a$ or as $\Delta x \rightarrow 0$ \qquad ，then $m_{\text {sec }} \rightarrow m_{\text {tan }}$

Limit Notation：We can also write $\lim _{\Delta x \rightarrow 0} m_{\mathrm{sec}}=\lim _{b \rightarrow a} m_{\mathrm{sec}}=m_{\mathrm{tan}}$

