

5.1 Fast and Curious

On a certain stretch of highway, Bal puts on Cruise Control and drives at 70 miles per hour for 3 hours.
a. Sketch a graph of Bal's velocity on this stretch of highway.

- b. How much distance did she cover during that time period?
- 2. Bal's little brother Malik is riding his bicycle with a velocity given by v(t) = 2 + 6t for $0 \le t \le 3$ where v(t) is in miles per hour and *t* is in hours.
 - a. Sketch a graph of Malik s velocity for $0 \le t \le 3$.
 - b. How much distance did Malik cover over the three-hour period?

- 3. Jayda is riding with a velocity given by $v(t) = 0.5t^3 2t^2 + 3.5t + 1$ for $0 \le t \le 3$ where v(t) is in km per hour and *t* is in hours. The graph is shown.
 - a. How can we use this graph to determine how far Jayda has traveled?
 - b. During which 1-hour interval is Jayda accumulating the most kilometers? How do you know?
- 4. Not all areas can be found using simple geometric formulas, so we'll have to approximate the area. To keep things simple, we'll use 3 rectangles of equal width. How will you determine the height of each rectangle?
- 5. Record the height, width, and area of each rectangle in the table below. Draw these rectangles on the graph.
 - a. Use left end points for the height of the rectangles.

Width	Height	Area

What is your estimate for the distance Jayda rode during those 3 hours?

Is your estimation an overestimate or an underestimate? How do you know?

Width	Height	Area

What is your estimate for the distance Jayda rode during those 3 hours?

Is your estimation an overestimate or an underestimate? How do you know?

6. How could we get an even better approximation of Jayda's total distance traveled?

Check Your Understanding

- 1. Sketch 3 rectangles that give a *midpoint Riemann sum* approximation for Jayda's distance for $0 \le t \le 3$. Recall $v(t) = 0.5t^3 - 2t^2 + 3.5t + 1$.
 - a. Fill in the boxes. Find this Riemann sum with your grapher. Do not round off.

- b. Use 6 rectangles of equal width to approximate Jayda's distance.
 - i. The width of each rectangle is $\Delta t =$
 - ii. Use a left Riemann sum approximation. Sketch the 6 rectangles below.

iii. Use a *right Riemann sum* approximation. Sketch the 6 rectangles to the right.

We will be able to find the *exact* area soon. The exact value is 87/8 km or 10.875 km.

- 2. Consider the region enclosed between the *x*-axis and the curve $y = e^x$.
 - a. Use a *left Riemann sum* approximation with 4 equal subintervals to approximate the area of the region between x = -1 and x = 3. Report to 3 decimal places.

b. Use a *right Riemann sum* approximation with 4 equal subintervals to approximate the same region. Report to 3 decimal places.

c. Use a *midpoint Riemann sum* approximation with 4 equal subintervals to approximate the same region. Report to 3 decimal places.

- 3. The rate at which water flows out of a pipe in gallons per hour is given by R(t). Selected values of R(t) are shown in the table below.
 - a. Use a *right Riemann sum* approximation with 4 equal subintervals to approximate the area underneath R(t) from t = 0 to t = 24. Show your calculations.

t	R(t)
(hours)	(gallons per hour)
0	9.6
3	10.4
6	10.8
9	11.2
12	11.4
15	11.3
18	10.7
21	10.2
24	9.6

b. What does this area represent?