Find $\sum_{i=1}^{\infty} 3(0.84)^{i-1}=3+3(0.84)+3(0.84)^{2}+3(0.84)^{3}+3(0.84)^{4}+\cdots$

$$
\sum_{i=1}^{\infty} 3(0.84)^{i-1}=3+3(0.84)+3(0.84)^{2}+3(0.84)^{3}+3(0.84)^{4}+\cdots=\frac{a}{1-r}, \text { where } a=3 \text { and } r=0.84 .
$$

So the sum is

$$
\begin{aligned}
\sum_{i=1}^{\infty} 3(0.84)^{i-1} & =3+3(0.84)+3(0.84)^{2}+3(0.84)^{3}+3(0.84)^{4}+\cdots \\
& =\frac{3}{1-0.84} \\
& =\frac{3}{0.16} \\
& =18.75
\end{aligned}
$$

This matches the figure, which shows the sum of the series climbing higher and higher toward 18.75 as $n \rightarrow \infty$.
geometric sequence and series

