$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
\end{aligned}
$$

$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$=2 \cos ^{2} \theta-1$
$=1-2 \sin ^{2} \theta$
$\sin 2 \theta=2 \sin \theta \cos \theta$
$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\sum_{i=0}^{n} a r^{i}=a+a r^{1}+a r^{2}+a r^{3}+\cdots+a r^{n-1}+a r^{n}=\frac{a\left(1-r^{n+1}\right)}{1-r}$
$\sum_{i=0}^{\infty} a r^{i}=a+a r^{1}+a r^{2}+a r^{3}+\cdots+a r^{n}+\cdots=\frac{a}{1-r}$ if $-1<r<1$

$\tan \theta=\frac{\sin \theta}{\cos \theta}$

$\csc \theta=\frac{1}{\sin \theta}$

$\sin \theta=\frac{y}{r}$ $\cos \theta=\frac{x}{r}$
$\cos ^{2} \theta+\sin ^{2} \theta=1$
$\sec ^{2} \theta-\tan ^{2} \theta=1$ $\tan \theta=\frac{y}{x}$

Ellipse Information with center ($\boldsymbol{h}, \boldsymbol{k}$) (Circle has RISE $=$ RUN)		
	Vertical Major Axis	Horizontal Major axis
Implicit equation	$\frac{(x-h)^{2}}{R U N^{2}}$	$\frac{(y-k)^{2}}{R I S E^{2}}=1$
Parametric equations	$\begin{aligned} & x=R U N \cos t+h \\ & y=R I S E \sin t+k \end{aligned}$	or variants of these
Major or Minor axis Vertices are V_{1}, V_{2}		RUN > RISE

