1. The heating schedule of a building, given by $H=f(t)$ is given below, where t is hours after midnight and H is the temperature in ${ }^{\circ} \mathrm{F}$. Graph the function $H=f(t)-2$ on the set of axes below.

t	$f(t)$
0	50
2	50
4	50
6	60
8	70
10	70
12	70
14	70
16	70
18	60
20	50
22	50
24	50

t, time (hours after midnight)
2. Now graph the function $H=f(t-2)$ on the set of axes below. (The graph of $H=f(t)$ is lightly sketched below to compare). Complete the table.
If the company decides to schedule its heating schedule according to this function, what has it decided to do?

t	$t-2$	$f(t-2)$
2		
4		
6		
8		
10		
12		
14		
16		
18		
20		
22		
24		
26		

$H\left({ }^{\circ}{ }^{\mathrm{F}}\right)$

t, time (hours after midnight)
3. At 8 am, is the building warmer under the $f(t)$ schedule, the $f(t-2)$ schedule, or the $f(t)-2$ schedule? What is the temperature under that schedule?
4. Which schedule saves the company most on heating costs, assuming that the cost of heating depends on the thermostat setting?

