Find the logarithms. Do not use a calculator. If they do not exist, state so.

1. $\log_3\left(\frac{1}{27}\right) = \boxed{?}$

Rewriting in exponential form, we have $3^{\boxed{?}} = \frac{1}{27}$. Write each side to the same base. Since $27 = 3^3$, then $\frac{1}{27} = 3^{-3}$. We need to find what number is 3 raised to in order to get $3^{\boxed{?}} = 3^{-3}$. This is -3. Therefore, $\log_3\left(\frac{1}{27}\right) = \boxed{-3}$.

2. $\log_{\frac{1}{3}}9 = ?$

Rewriting in exponential form, we have $\frac{1}{3} = 9$. Write each side to the same base. Since $9 = 3^2$, and $\frac{1}{3} = 3^{-1}$, then

$$\left(\frac{1}{3}\right)^{\boxed{?}} = 9$$

$$\left(3^{-1}\right)^{\boxed{?}} = 3^{2}$$

$$\left(3\right)^{-1 \times \boxed{?}} = 3^{2}$$

To find the answer, we need to find what number multiplied by -1 is 2. This is -2. Therefore, $\log_{\frac{1}{2}}9 = \boxed{-2}$.

3. $\log_3 \sqrt{3} = 2$?

Rewriting in exponential form, we have $3^{?} = \sqrt{3}$. Since $3^{1/2} = \sqrt{3}$, we have $\log_3 \sqrt{3} = \boxed{1/2}$.

4. To find $\ln \frac{1}{e^{0.247}}$, write $\frac{1}{e^{0.247}}$ as *e* raised to some power and use the inverse property $\ln e^w = w$.

$$\ln \frac{1}{e^{0.247}} = \ln e^{-0.247} = -0.247$$

5. To find $\ln \sqrt[3]{\frac{1}{e^2}}$, write $\sqrt[3]{\frac{1}{e^2}}$ as *e* raised to some power and use the inverse property $\ln e^w = w$. $\ln \sqrt[3]{\frac{1}{e^2}} = \ln \sqrt[3]{e^{-2}} = \ln e^{-2/3} = -\frac{2}{3}$ 6. To find $\log \sqrt{1000}$, write $\sqrt{1000}$ as 10 raised to some power and use the inverse property $\log 10^w = w$.

Therefore, $\log \sqrt{1000} = \log \sqrt{10^3} = \log 10^{3/2} = 3/2$

7. $\log_{\sqrt{5}} 25 = ?$.

Rewriting in exponential form, we have $(\sqrt{5})^{??} = 25$. Write each side to the same base. Since $\sqrt{5} = 5^{1/2}$, and $25 = 5^2$, then $(\sqrt{5})^{??} = 25$

$$(5^{\frac{1}{2}})^{\frac{?}{?}} = 5^{2}$$

 $(5)^{\frac{1}{2}^{\frac{?}{?}}} = 5^{2}$

To find the answer, we need to find what number multiplied by $\frac{1}{2}$ is 2. $(5)^{\frac{1}{2}x} = 5^2$ means $\frac{1}{2}x = 2$.

Multiply both sides by 2 to find that x = 4. Therefore, $\log_{\sqrt{5}} 25 = 4$.

8. $\log_2\left(\frac{1}{2}\right) = \boxed{?}$

Rewriting in exponential form, we have $(2)^{\boxed{?}} = \frac{1}{2}$. Since $2^{-1} = \frac{1}{2}$, we have $\log_2\left(\frac{1}{2}\right) = \boxed{-1}$.

9. $\log_5\left(\frac{1}{125}\right) = \boxed{?}$

Rewriting in exponential form, we have $(5)^{\boxed{?}} = \frac{1}{125}$. Since $5^{-3} = \frac{1}{125}$, we have $\log_5\left(\frac{1}{125}\right) = \boxed{-3}$.

10. $\log_{\pi} 0 =$?

Rewriting in exponential form, we have $(\pi)^{\boxed{?}} = 0$.

This equation has no solution, so the answer is undefined.

11. $\log_{\pi} 1 = ?$ Rewriting in expon

Rewriting in exponential form, we have $(\pi)^{\boxed{?}} = 1$. Since $\pi^0 = 1$, we have $\log_{\pi} 1 = \boxed{0}$. 12. $\log\left(\frac{1}{\sqrt[3]{10}}\right) = \boxed{?}$ To find $\log\left(\frac{1}{\sqrt[3]{10}}\right)$, write $\frac{1}{\sqrt[3]{10}}$ as 10 raised to some power and use the inverse property $\log 10^{w} = w$. Therefore, $\log\left(\frac{1}{\sqrt[3]{10}}\right) = \log\left(\frac{1}{10^{1/3}}\right) = \log(10^{-1/3}) = -1/3$ 13. $\log_{27} 9 = \boxed{?}$ Rewriting in exponential form, we have $(27)^{\boxed{?}} = 9$.

Write each side to the same base. Since $27 = 3^3$, and $9 = 3^2$, then $(27)^{\boxed{?}} = 9$ $(3^3)^{\boxed{?}} = 3^2$ $(3)^{3\boxed{?}} = 3^2$ To find the answer, we need to find what number multiplied by 3 is 2.

 $(3)^{3x} = 3^2$ means 3x = 2.

Divide both sides by 3 to find that $x = \frac{2}{3}$. Therefore, $\log_{27} 9 = 2/3$.

14. log ₇ 49

To find $\log_7 49$, write 49 as 7² and use the inverse property: $\log_7 49 = \log_7 7^2 = 2$.

15. $\log_{\frac{1}{2}} 8 = \boxed{?}$

Rewriting in exponential form, we have $\left(\frac{1}{2}\right)^{\boxed{?}} = 8$. Write each side to the same base. Since $\frac{1}{2} = 2^{-1}$, and $8 = 2^3$, then

 $\left(\frac{1}{2}\right)^{\boxed{?}} = 8$ $\left(2^{-1}\right)^{\boxed{?}} = 2^{3}$

$$(2)^{-1} = 2^3$$

To find the answer, we need to find what number multiplied by -1 is 3. $(2)^{-1} = 2^3$ means -x = 3. Divide both sides by -1. The answer is x = -3. Therefore, $\log_{\frac{1}{2}} 8 = \boxed{-3}$.

16.
$$\log_{0.07} \left(\frac{1}{0.07^4} \right)$$

To find $\log_{0.07} \left(\frac{1}{0.07^4} \right)$, write $\frac{1}{0.07^4}$ as 0.07^{-4} and use the inverse property:
 $\log_{0.07} \left(\frac{1}{0.07^4} \right) = \log_{0.07} \left(0.07^{-4} \right) = -4$

17.
$$\ln \frac{1}{\sqrt{e}}$$

To find $\ln \frac{1}{\sqrt{e}}$, write $\frac{1}{\sqrt{e}}$ as *e* raised to some power and use the inverse property $\ln e^w = w$. $\ln \frac{1}{\sqrt{e}} = \ln \frac{1}{e^{1/2}} = \ln e^{-1/2} = -\frac{1}{2}$

18. $\ln e^3$

To find $\ln e^3$, use the inverse property: $\ln e^3 = 3$

19. $\log 10,000,000,000^2$

To find $\log 10,000,000,000^2$, write $10,000,000,000^2$ as 10 raised to some power and use the inverse property: $\log 10^w = w$ $\log 10,000,000,000^2 = \log (10^{10})^2 = \log 10^{20} = 20$

 $20. \log_{\sqrt{8}} \sqrt{8} = \boxed{?}.$

Rewriting in exponential form, we have $(\sqrt{8})^{\boxed{?}} = \sqrt{8}$. So $\log_{\sqrt{8}} \sqrt{8} = \boxed{1}$

21. $\log_{\frac{1}{4}} 4 = 2$?

Rewriting in exponential form, we have $\left(\frac{1}{4}\right)^{\boxed{?}} = 4$.

So
$$\log_{\frac{1}{4}} 4 = \boxed{-1}$$

22. log₄16

To find $\log_4 16$, write 16 as 4^2 and use the inverse property: $\log_4 16 = \log_4 4^2 = 2$.

23. $\log_{3} 9$

To find $\log_3 9$, write 9 as 3^2 and use the inverse property: $\log_3 9 = \log_3 3^2 = 2$.

24. log ₂ 32

To find $\log_2 32$, write 32 as 2^5 and use the inverse property: $\log_2 32 = \log_2 2^5 = 5$.

25.
$$\log_2\left(\frac{1}{32}\right)$$

To find $\log_2\left(\frac{1}{32}\right)$, write $\frac{1}{32}$ as 2^{-5} and use the inverse property:
 $\log_2\left(\frac{1}{32}\right) = \log_2 2^{-5} = -5$.

26. $\log_{7} \sqrt{7}$

To find $\log_7 \sqrt{7}$, write $\sqrt{7}$ as $7^{1/2}$ and use the inverse property: $\log_7 \sqrt{7} = \log_7 7^{1/2} = \frac{1}{2}$

27. ln $e^{1234567}$

To find $\ln e^{1234567}$, use the inverse property: $\ln e^{1234567} = 1234567$

28.
$$\log_{19}\left(\frac{1}{19}\right)$$

To find $\log_{19}\left(\frac{1}{19}\right)$, write $\frac{1}{19}$ as 19^{-1} and use the inverse property:
 $\log_{19}\left(\frac{1}{19}\right) = \log_{19}19^{-1} = -1.$

29. $\log \sqrt{10^x}$

To find $\log \sqrt{10^x}$, write $\sqrt{10^x}$ as 10 raised to some power and use the inverse property: $\log \sqrt{10^x} = \log 10^{x/2} = \frac{x}{2}$ 30. $\ln \sqrt{e^{3x}}$

To find $\ln \sqrt{e^{3x}}$, write $\sqrt{e^{3x}}$ as *e* raised to some power and use the inverse property $\ln \sqrt{e^{3x}} = \ln e^{3x/2} = \frac{3x}{2}$.

31. $\ln \sqrt[3]{e^2}$

To find $\ln \sqrt[3]{e^2}$, write $\sqrt[3]{e^2}$ as *e* raised to some power and use the inverse property $\ln \sqrt[3]{e^2} = \ln e^{2/3} = \frac{2}{3}$.

32. $\log_{81} 3 = 2$?

Rewriting in exponential form, we have $81^{?} = 3$.

We need to find what number 81 is raised to in order to get $81^{?} = 3$. Since $81 = 3^4$ we have

$$81^{?} = 3$$

 $(3^4)^{?} = 3$
 $(3)^{4^{?}} = 3^{1}$

To find the answer, we need to find what number multiplied by 4 is 1.

 $(3)^{4x} = 3^1$ means 4x = 1. Divide both sides by 4.

The answer is $x = \frac{1}{4}$. Therefore, $\log_{81} 3 = 1/4$.

33.
$$\log\left(\frac{1}{10^x}\right)$$

To find $\log\left(\frac{1}{10^x}\right)$, write $\frac{1}{10^x}$ as 10^{-x} and use the inverse property:
 $\log\left(\frac{1}{10^x}\right) = \log(10^{-x}) = -x$.

34.
$$\log_{\pi}\left(\frac{1}{\pi^4}\right)$$
. Use the inverse property: $\log_{\pi}\left(\frac{1}{\pi^4}\right) = \log_{\pi}\pi^{-4} = -4$

35. $\ln e^{3x}$

To find $\ln e^{3x}$, use the inverse property: $\ln e^{3x} = 3x$

36. $\log_{0.01}(1000) = ?$

Rewriting in exponential form, we have $(0.01)^{\boxed{?}} = 1000$.

$$\log_{0.01}(1000) = ?$$

Write each side to the same base. Since $0.01 = 10^{-2}$, and $1000 = 10^{3}$, then $(0.01)^{\boxed{?}} = 1000$ $(10^{-2})^{\boxed{?}} = 10^{3}$ $(10)^{-2\boxed{?}} = 10^{3}$ To find the answer, we need to find what number multiplied by -2 is 3.

 $(10)^{-2x} = 10^3$ means -2x = 3.

Divide both sides by -2 to find that $x = -\frac{3}{2}$. Therefore, $\log_{0.01}(1000) = -3/2$

37.
$$\ln e^{3\sqrt{2\pi}}$$

To find $\ln e^{3\sqrt{2\pi}}$, use the inverse property: $\ln e^{3\sqrt{2\pi}} = 3\sqrt{2\pi}$

38. $\log 10^{\sqrt{17}}$

To find $\log 10^{\sqrt{17}}$, use the inverse property: $\log 10^{\sqrt{17}} = \sqrt{17}$

39. $\ln(1/e^{123456789})$

To find $\ln(1/e^{123456789})$, write $1/e^{123456789}$ as $e^{-123456789}$ and use the inverse property: $\ln(1/e^{123456789}) = \ln e^{-123456789} = -123456789$.

40.
$$\log\left(\frac{1}{10^{4x}}\right)$$

To find $\log\left(\frac{1}{10^{4x}}\right)$, write $\frac{1}{10^{4x}}$ as 10^{-4x} and use the inverse property:
 $\log\left(\frac{1}{10^{4x}}\right) = \log 10^{-4x} = -4x$.