Logarithms KEY

Find the logarithms. Do not use a calculator. If they do not exist, state so.

1. $\log _{3}\left(\frac{1}{27}\right)=\square$

Rewriting in exponential form, we have $3^{\square ?}=\frac{1}{27}$.
Write each side to the same base. Since $27=3^{3}$, then $\frac{1}{27}=3^{-3}$.
We need to find what number is 3 raised to in order to get $3^{\square ?}=3^{-3}$.
This is -3 . Therefore, $\log _{3}\left(\frac{1}{27}\right)=-3$.
2. $\log _{\frac{1}{3}} 9=?$

Rewriting in exponential form, we have $\frac{1}{3}$| $?$ |
| :--- | .

Write each side to the same base. Since $9=3^{2}$, and $\frac{1}{3}=3^{-1}$, then
$\left(\frac{1}{3}\right)^{\square ?}=9$
$\left(3^{-1}\right)^{\boxed{?}}=3^{2}$
$(3)^{-1 \times \square}=3^{2}$
To find the answer, we need to find what number multiplied by -1 is 2 .
This is -2 . Therefore, $\log _{\frac{1}{3}} 9=-2$.
3. $\log _{3} \sqrt{3}=?$

Rewriting in exponential form, we have $3^{?!}=\sqrt{3}$.
Since $3^{1 / 2}=\sqrt{3}$, we have $\log _{3} \sqrt{3}=1 / 2$.
4. To find $\ln \frac{1}{e^{0.247}}$, write $\frac{1}{e^{0.247}}$ as e raised to some power and use the inverse property $\ln e^{w}=w$.

$$
\ln \frac{1}{e^{0.247}}=\ln e^{-0.247}=-0.247
$$

5. To find $\ln \sqrt[3]{\frac{1}{e^{2}}}$, write $\sqrt[3]{\frac{1}{e^{2}}}$ as e raised to some power and use the inverse property $\ln e^{w}=w$.

$$
\ln \sqrt[3]{\frac{1}{e^{2}}}=\ln \sqrt[3]{e^{-2}}=\ln e^{-2 / 3}=-\frac{2}{3}
$$

6. To find $\log \sqrt{1000}$, write $\sqrt{1000}$ as 10 raised to some power and use the inverse property $\log 10^{w}=w$.
Therefore, $\log \sqrt{1000}=\log \sqrt{10^{3}}=\log 10^{3 / 2}=3 / 2$
7. $\log _{\sqrt{5}} 25=?$.

Rewriting in exponential form, we have $(\sqrt{5})^{\frac{?}{?}}=25$.
Write each side to the same base. Since $\sqrt{5}=5^{1 / 2}$, and $25=5^{2}$, then
$(\sqrt{5})^{? ?}=25$
$\left(5^{\frac{1}{2}}\right)^{? ?}=5^{2}$
$(5)^{\frac{1}{2} ? ?}=5^{2}$
To find the answer, we need to find what number multiplied by $\frac{1}{2}$ is 2 .
$(5)^{\frac{1}{2} \sqrt{x}}=5^{2}$ means $\frac{1}{2} x=2$.
Multiply both sides by 2 to find that $x=4$. Therefore, $\log _{\sqrt{5}} 25=4$.
8. $\log _{2}\left(\frac{1}{2}\right)=?$

Rewriting in exponential form, we have (2) $)^{?}=\frac{1}{2}$.
Since $2^{-1}=\frac{1}{2}$, we have $\log _{2}\left(\frac{1}{2}\right)=-1$.
9. $\log _{5}\left(\frac{1}{125}\right)=?$

Rewriting in exponential form, we have $(5)^{? ?}=\frac{1}{125}$.
Since $5^{-3}=\frac{1}{125}$, we have $\log _{5}\left(\frac{1}{125}\right)=-3$.
10. $\log _{\pi} 0=?$

Rewriting in exponential form, we have $(\pi)^{\frac{?}{?}}=0$.
This equation has no solution, so the answer is undefined.
11. $\log _{\pi} 1=?$

Rewriting in exponential form, we have $(\pi)^{\frac{?}{?}}=1$.
Since $\pi^{0}=1$, we have $\log _{\pi} 1=\square$.
12. $\log \left(\frac{1}{\sqrt[3]{10}}\right)=\square$

To find $\log \left(\frac{1}{\sqrt[3]{10}}\right)$, write $\frac{1}{\sqrt[3]{10}}$ as 10 raised to some power and use the inverse property $\log 10^{w}=w$.
Therefore, $\log \left(\frac{1}{\sqrt[3]{10}}\right)=\log \left(\frac{1}{10^{1 / 3}}\right)=\log \left(10^{-1 / 3}\right)=-1 / 3$
13. $\log _{27} 9=?$

Rewriting in exponential form, we have $(27)^{? ?}=9$.
Write each side to the same base. Since $27=3^{3}$, and $9=3^{2}$, then
$(27)^{?}=9$
$\left(3^{3}\right)^{\square}=3^{2}$
(3) ${ }^{3 ?}=3^{2}$

To find the answer, we need to find what number multiplied by 3 is 2 .
$(3)^{3 \sqrt{\boxed{ }}}=3^{2}$ means $3 x=2$.
Divide both sides by 3 to find that $x=\frac{2}{3}$. Therefore, $\log _{27} 9=2 / 3$.
14. $\log _{7} 49$

To find $\log _{7} 49$, write 49 as 7^{2} and use the inverse property: $\log _{7} 49=\log _{7} 7^{2}=2$.
15. $\log _{\frac{1}{2}} 8=?$

Rewriting in exponential form, we have $\left(\frac{1}{2}\right)^{\frac{?}{3}}=8$.
Write each side to the same base. Since $\frac{1}{2}=2^{-1}$, and $8=2^{3}$, then
$\left(\frac{1}{2}\right)^{? ?}=8$
$\left(2^{-1}\right)^{?}=2^{3}$
(2) ${ }^{-1[\sqrt{?}}=2^{3}$

To find the answer, we need to find what number multiplied by -1 is 3 .
$(2)^{-1 \sqrt{\boxed{x}}}=2^{3}$ means $-x=3$. Divide both sides by -1 .
The answer is $x=-3$. Therefore, $\log _{\frac{1}{2}} 8=-3$.
16. $\log _{0.07}\left(\frac{1}{0.07^{4}}\right)$

To find $\log _{0.07}\left(\frac{1}{0.07^{4}}\right)$, write $\frac{1}{0.07^{4}}$ as 0.07^{-4} and use the inverse property:
$\log _{0.07}\left(\frac{1}{0.07^{4}}\right)=\log _{0.07}\left(0.07^{-4}\right)=-4$
17. $\ln \frac{1}{\sqrt{e}}$

To find $\ln \frac{1}{\sqrt{e}}$, write $\frac{1}{\sqrt{e}}$ as e raised to some power and use the inverse property $\ln e^{w}=w$.
$\ln \frac{1}{\sqrt{e}}=\ln \frac{1}{e^{1 / 2}}=\ln e^{-1 / 2}=-\frac{1}{2}$
18. $\ln e^{3}$

To find $\ln e^{3}$, use the inverse property: $\ln e^{3}=3$
19. $\log 10,000,000,000^{2}$

To find $\log 10,000,000,000^{2}$, write $10,000,000,000^{2}$ as 10 raised to some power and use the inverse property: $\log 10^{w}=w$ $\log 10,000,000,000^{2}=\log \left(10^{10}\right)^{2}=\log 10^{20}=20$
20. $\log _{\sqrt{8}} \sqrt{8}=?$.

Rewriting in exponential form, we have $(\sqrt{8})^{? ?}=\sqrt{8}$.
So $\log _{\sqrt{8}} \sqrt{8}=1$
21. $\log _{\frac{1}{4}} 4=?$

Rewriting in exponential form, we have $\left(\frac{1}{4}\right)^{?}=4$.
So $\log _{\frac{1}{4}} 4=-1$
22. $\log _{4} 16$

To find $\log _{4} 16$, write 16 as 4^{2} and use the inverse property: $\log _{4} 16=\log _{4} 4^{2}=2$.
23. $\log _{3} 9$

To find $\log _{3} 9$, write 9 as 3^{2} and use the inverse property: $\log _{3} 9=\log _{3} 3^{2}=2$.
24. $\log _{2} 32$

To find $\log _{2} 32$, write 32 as 2^{5} and use the inverse property: $\log _{2} 32=\log _{2} 2^{5}=5$.
25. $\log _{2}\left(\frac{1}{32}\right)$

To find $\log _{2}\left(\frac{1}{32}\right)$, write $\frac{1}{32}$ as 2^{-5} and use the inverse property:
$\log _{2}\left(\frac{1}{32}\right)=\log _{2} 2^{-5}=-5$.
26. $\log _{7} \sqrt{7}$

To find $\log _{7} \sqrt{7}$, write $\sqrt{7}$ as $7^{1 / 2}$ and use the inverse property: $\log _{7} \sqrt{7}=\log _{7} 7^{1 / 2}=\frac{1}{2}$
27. $\ln e^{1234567}$

To find $\ln e^{1234567}$, use the inverse property: $\ln e^{1234567}=1234567$
28. $\log _{19}\left(\frac{1}{19}\right)$

To find $\log _{19}\left(\frac{1}{19}\right)$, write $\frac{1}{19}$ as 19^{-1} and use the inverse property:
$\log _{19}\left(\frac{1}{19}\right)=\log _{19} 19^{-1}=-1$.
29. $\log \sqrt{10^{x}}$

To find $\log \sqrt{10^{x}}$, write $\sqrt{10^{x}}$ as 10 raised to some power and use the inverse property: $\log \sqrt{10^{x}}=\log 10^{x / 2}=\frac{x}{2}$
30. $\ln \sqrt{e^{3 x}}$

To find $\ln \sqrt{e^{3 x}}$, write $\sqrt{e^{3 x}}$ as e raised to some power and use the inverse property $\ln \sqrt{e^{3 x}}=\ln e^{3 x / 2}=\frac{3 x}{2}$.
31. $\ln \sqrt[3]{e^{2}}$

To find $\ln \sqrt[3]{e^{2}}$, write $\sqrt[3]{e^{2}}$ as e raised to some power and use the inverse property
$\ln \sqrt[3]{e^{2}}=\ln e^{2 / 3}=\frac{2}{3}$.
32. $\log _{81} 3=?$

Rewriting in exponential form, we have $81^{? ?}=3$.
We need to find what number 81 is raised to in order to get $81^{?}=3$.
Since $81=3^{4}$ we have
$81^{?}=3$
$\left(3^{4}\right)^{\underline{?}}=3$
$(3)^{4 ?}=3^{1}$
To find the answer, we need to find what number multiplied by 4 is 1 .
$(3)^{4 \sqrt{x}}=3^{1}$ means $4 x=1$. Divide both sides by 4 .
The answer is $x=\frac{1}{4}$. Therefore, $\log _{81} 3=1 / 4$.
33. $\log \left(\frac{1}{10^{x}}\right)$

To find $\log \left(\frac{1}{10^{x}}\right)$, write $\frac{1}{10^{x}}$ as 10^{-x} and use the inverse property:
$\log \left(\frac{1}{10^{x}}\right)=\log \left(10^{-x}\right)=-x$.
34. $\log _{\pi}\left(\frac{1}{\pi^{4}}\right)$. Use the inverse property: $\log _{\pi}\left(\frac{1}{\pi^{4}}\right)=\log _{\pi} \pi^{-4}=-4$
35. $\ln e^{3 x}$

To find $\ln e^{3 x}$, use the inverse property: $\ln e^{3 x}=3 x$
36. $\log _{0.01}(1000)=?$

Rewriting in exponential form, we have $(0.01)^{? ?}=1000$.
$\log _{0.01}(1000)=?$
Write each side to the same base. Since $0.01=10^{-2}$, and $1000=10^{3}$, then
$(0.01)^{? ?}=1000$
$\left(10^{-2}\right)^{?!}=10^{3}$
$(10)^{-2 ?}=10^{3}$
To find the answer, we need to find what number multiplied by -2 is 3 .
$(10)^{-2 \sqrt{x}}=10^{3}$ means $-2 x=3$.
Divide both sides by -2 to find that $x=-\frac{3}{2}$. Therefore, $\log _{0.01}(1000)=-3 / 2$.
37. $\ln e^{3 \sqrt{2 \pi}}$

To find $\ln e^{3 \sqrt{2 \pi}}$, use the inverse property: $\ln e^{3 \sqrt{2 \pi}}=3 \sqrt{2 \pi}$
38. $\log 10^{\sqrt{17}}$

To find $\log 10^{\sqrt{17}}$, use the inverse property: $\log 10^{\sqrt{17}}=\sqrt{17}$
39. $\ln \left(1 / e^{123456789}\right)$

To find $\ln \left(1 / e^{12345679}\right)$, write $1 / e^{123456789}$ as $e^{-123456789}$ and use the inverse property:
$\ln \left(1 / e^{123456789}\right)=\ln e^{-123456789}=-123456789$.
40. $\log \left(\frac{1}{10^{4 x}}\right)$

To find $\log \left(\frac{1}{10^{4 x}}\right)$, write $\frac{1}{10^{4 x}}$ as $10^{-4 x}$ and use the inverse property:

$$
\log \left(\frac{1}{10^{4 x}}\right)=\log 10^{-4 x}=-4 x
$$

