For each rational function in 1-5,
a. Find the power function it most closely resembles for very large values of x.
b. Describe the long run behavior by completing the boxes:

As $x \rightarrow-\infty$, then $y \rightarrow \square$; as $x \rightarrow \infty$, then $y \rightarrow \square$
c. Sketch the power function which has the same long run behavior. Pick from these choices:

The short run behavior is covered up to emphasize that only the long run behavior is being mirrored.

d. Find the horizontal asymptote, if there is one. If none, state so.

1. $f(x)=\frac{8 x^{3}+5 x-9}{4 x^{7}+200 x^{2}-6}$
2. $f(x)=\frac{36 x^{3}+3 x-7}{x^{2}-4 x^{3}}$
3. $f(x)=\frac{3+4 x}{2+7 x}$
4. $f(x)=\frac{10 x^{6}-4 x}{(x-3)(x-4)}$
$=\frac{\sqrt{10 x^{6}}-4 x}{x^{2}+\text { remaining terms }}$
5. $f(x)=\frac{2(x-2)^{2}(x-6)}{9(x-5)^{3}}$
$=\frac{2 x^{3}+\text { remaining terms }}{9 x^{3}+\text { remaining terms }}$
a. Power function model: $y=\underline{\frac{8 x^{3}}{4 x^{7}}}=\frac{2}{x^{4}}$ (simplify)
b. As $x \rightarrow-\infty$, then $y \rightarrow 0$; as $x \rightarrow \infty$, then $y \rightarrow 0$
c. Long run behavior looks like this power function
d. horizontal asymptote: $y=0$
a. Power function model: $y=\frac{\frac{36 x^{3}}{-4 x^{3}}}{=-9}$ (simplify)
b. As $x \rightarrow-\infty$, then $y \rightarrow-9$; as $x \rightarrow-\infty$, then $y \rightarrow-9$
c. Long run behavior looks like this power function:
d. horizontal asymptote: $y=-9$
a. Power function model: $y=\underline{\frac{4 x}{7 x}}=\frac{4}{7}$ (simplify)
b. As $x \rightarrow-\infty$, then $y \rightarrow \frac{4}{7}$; as $x \rightarrow \infty$, then $y \rightarrow \frac{4}{7}$
c. Long run behavior looks like this power function:
d. horizontal asymptote: $y=\frac{4}{7}$
a. Power function model: $y=\frac{\frac{10 x^{6}}{x^{2}}=10 x^{4}}{\text { (simplify) }}$
b. As $x \rightarrow-\infty$, then $y \rightarrow \infty$; as $x \rightarrow \infty$, then $y \rightarrow \infty$
c. Long run behavior looks like this power function:
d. horizontal asymptote: None
a. Power function model: $y=\underline{\frac{2 x^{3}}{9 x^{3}}}=\frac{2}{9}$ (simplify)
b. As $x \rightarrow-\infty$, then $y \rightarrow \frac{2}{9}$; as $x \rightarrow \infty$, then $y \rightarrow \frac{2}{9}$
c. Long run behavior looks like this power function:
d. horizontal asymptote: $y=\frac{2}{9}$

For the functions below, report the horizontal asymptote, if there is one. If none, state so.
6. $f(x)=\frac{7(x+2)(x+5)}{11(x-5)}$ 9. $f(x)=\frac{6 x}{3 x^{2}+10}+2 \quad$ Answers:
6. $f(x)=\frac{(x+2)(x+5)}{11(x-5)}$
9. $f(x)=\frac{6 x}{3 x^{2}+10}+2$
6. None
7. $y=7$
7. $f(x)=\frac{12 x^{2}+1}{3 x^{2}+2}+3$
10. $f(x)=\frac{3(x+5)^{2}(x-4)}{4(x-6)^{3}(x-1)}$
8. $y=1250$
9. $y=2$
8. $f(x)=\frac{25 x^{2}+38}{x(1+0.02 x)}$

Please see next page for more

DETAILED SOLUTIONS

Easter Egg! For 1 bonus participation point email John LaMaster, lamaster@pfw.edu, by 11:59 PM April 16 to share the name of the monster that makes a brief cameo appearance.
6. $f(x)=\frac{7(x+2)(x+5)}{11(x-5)}$ looks like the power function $\frac{7 x^{2}}{11 x}=\frac{7 x}{11}$ for very large values of x.

This is a line of positive slope. There is no horizontal line this function approaches.
As $x \rightarrow-\infty$, then $y \rightarrow-\infty$; as $x \rightarrow \infty$, then $y \rightarrow \infty$.
So, no horizontal asymptote.
7. $f(x)=\frac{12 x^{2}+1}{3 x^{2}+2}+3$ is a vertical shift of the function $y=\frac{12 x^{2}+1}{3 x^{2}+2}$ up 3 .

Since $y=\frac{12 x^{2}+1}{3 x^{2}+2}$ looks like the power function $\frac{12 x^{2}}{3 x^{2}}=4$ for very large values of x, the graph of $y=\frac{12 x^{2}+1}{3 x^{2}+2}$ would have a horizontal asymptote of $y=4$. Therefore, the shifted function $f(x)=\frac{12 x^{2}+1}{3 x^{2}+2}+3$ would have a horizontal asymptote of $y=7$. Note that for very large values of $x, f(x)=\frac{12 x^{2}+1}{3 x^{2}+2}+3 \rightarrow \frac{12 x^{2}}{3 x^{2}}+3=4+3=7$.
8. $f(x)=\frac{25 x^{2}+38}{x(1+0.02 x)}$ looks like the power function $\frac{25 x^{2}}{0.02 x^{2}}=\frac{25}{0.02}=1250$ for very large values of x. Therefore, it has a horizontal asymptote of $y=1250$.
9. $f(x)=\frac{6 x}{3 x^{2}+10}+2$ is a vertical shift of the function $y=\frac{6 x}{3 x^{2}+10}$ up 2 .

Since $y=\frac{6 x}{3 x^{2}+10}$ looks like the power function $\frac{6 x}{3 x^{2}}=\frac{2}{x}$ for very large values of x, the graph of $y=\frac{6 x}{3 x^{2}+10}$ would have a horizontal asymptote of $y=0$. Therefore, the shifted function $f(x)=\frac{6 x}{3 x^{2}+10}+2$ would have a horizontal asymptote of $y=2$. Note that for very large values of $x, \frac{6 x}{3 x^{2}}+2=\frac{2}{x}+2 \rightarrow 0+2$
10. $f(x)=\frac{3(x+5)^{2}(x-4)}{4(x-6)^{3}(x-1)}=\frac{3 x^{3}+\text { remaining terms }}{4 x^{4}+\text { remaining terms }}$, so it looks like the power function $\frac{3 x^{3}}{4 x^{4}}$ for very large values of x. Note that $\frac{3 x^{3}}{4 x^{4}}=\frac{3}{4 x}$ approaches 0 as x increases without bound, so $f(x)=\frac{3(x+5)^{2}(x-4)}{4(x-6)^{3}(x-1)}$ has a horizontal asymptote of $y=0$.

