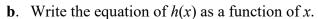
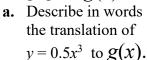
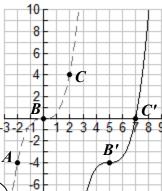
- 1. The graph of $y = 0.5x^3$ is shown (dashed), along with the graph of h(x) on the set of axes below. The graph of h(x) is a translation of $y = 0.5x^3$, which has been shifted both horizontally and vertically. Points A, B, and C on $y = 0.5x^3$ correspond to A', B', and C' on h(x), respectively.
- **a.** Describe in words the translation of $y = 0.5x^3$ to h(x). *Example:* a shift left or right <*some specified number of* > units and a shift up or down <*some specified number of* > units.

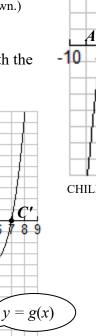


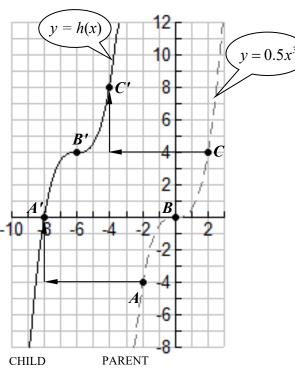
- **c.** At what value does the graph of h(x) cross the x-axis? (This should be consistent with your formula in part **b**.)
- **d**. At what value does the graph of h(x) cross the y-axis? (You can use your formula or a grapher. No work need be shown.)
- 2. The graph of $y = 0.5x^3$ is shown (dashed), along with the graph of g(x) on the set of axes below.

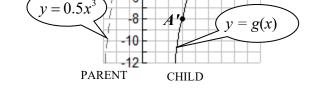


- **b.** Write the equation of g(x) as a function of x.
- c. At what value does the graph of g(x) cross the *x*-axis?
- **d**. At what value does the graph of g(x) cross the *y*-axis?

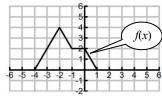




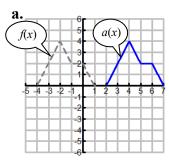


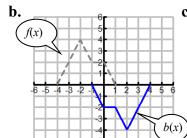


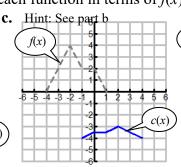
3. The graph of y = f(x) is shown. The functions shown below are transformations of f(x).

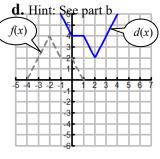


Describe each transformation and write a formula for each function in terms of f(x).

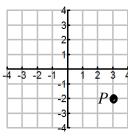




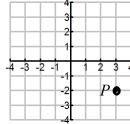




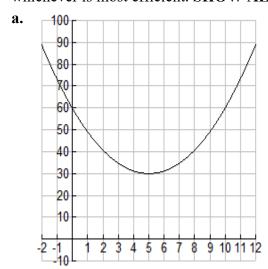
- **4.** Suppose the point P(3,-2) is a point on the graph of y = f(x)
 - a. Suppose f(x) is even:
 - i. Report the coordinates of another point Q,

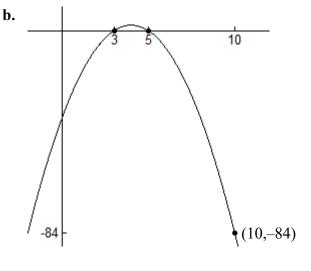


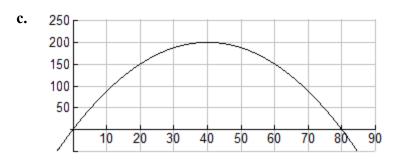
- **b.** Suppose f(x) is **odd**:
 - i. Report the coordinates of another point Q, which corresponds to P. (
 - ii. Plot the point Q on the grid provided.



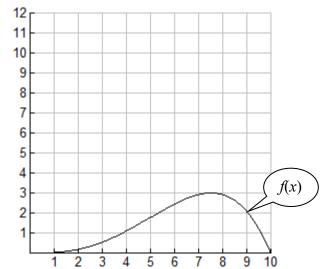
- 5. A ballet dancer jumps in the air. The height, h(t), in feet, of the dancer at time, t in seconds since the start of the jump, is given by $h(t) = -16t^2 + 12t$. No work need be shown. Do not round off any calculations.
 - **a.** Write the function in <u>factored form</u>.
 - **b.** Report the zeros of the function.
 - **c.** Report the vertex of the function.
 - **d.** Write the equation of the axis of symmetry.
 - e. How much time in seconds is the dancer in the air?
 - What is the maximum height of the jump?
 - g. When does the maximum height of the jump occur?
 - **h.** Write the formula in *vertex form*.
- 6. Write formulas for the parabolas. You may use vertex form, factored form, or standard form, whichever is most efficient. SHOW ALL WORK!





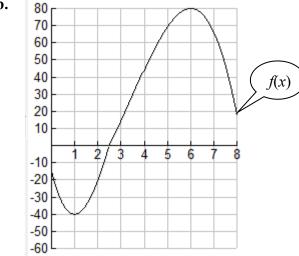


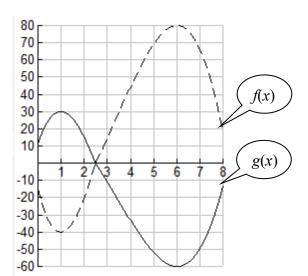
7. The graph of y = f(x) is shown. Use the graph of f(x) to write g(x) as a transformation of f(x). Find a formula for g(x) in **terms of** f(x).



12 11 10 g(x)9 8 7 6

b.





- **8**. In the year 1900 the population P of a town was 200. The town grew by 23% every year. In the year 1900 the population Q of a town was 400 people but it grew by 200 people every year.
 - **a.** Write formulas for P and Q.
 - **b**. Find how many years it will take after 1900 for the population of Q to overtake the population of P. Report your solution to 2 decimal places.
- 9. Find the logarithm.

a.
$$\ln e^{5x-1}$$

b.
$$\log 10^{7x}$$

c.
$$\log_5 \sqrt{5}$$

d.
$$\log_{\sqrt{5}} \sqrt{5}$$

e.
$$\ln \frac{1}{\sqrt{e^{3x}}}$$

f.
$$e^{\ln\sqrt{5x}}$$

$$\mathbf{g.} \ \log_5\left(\sqrt[7]{5^x}\right)$$

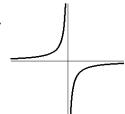
Find the logarithm.

a.
$$\ln e^{5x-1}$$
b. $\log 10^{7x}$
c. $\log_5 \sqrt{5}$
d. $\log_{\sqrt{5}} \sqrt{5}$
e. $\ln \frac{1}{\sqrt{e^{3x}}}$
f. $e^{\ln \sqrt{5x}}$
g. $\log_5 \left(\sqrt[7]{5^x} \right)$
h. $\log_5 \left(\frac{1}{25} \right)$
i. $\log 100^{11x}$

10. The graphs below are power functions of the form $y = k x^p$.

Determine the following information. Circle the appropriate bold face words.

a.

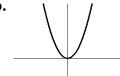


The leading coefficient, k, is **negative**. / **positive**.

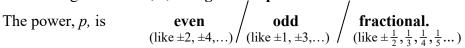
The power,
$$p$$
, is
$$\frac{\text{even}}{(\text{like }\pm 2, \pm 4,...)} / \frac{\text{odd}}{(\text{like }\pm 1, \pm 3,...)} / \frac{\text{fractional.}}{(\text{like }\pm \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}...)}$$

The symmetry of the graph is even / odd / neither even nor odd .

b.

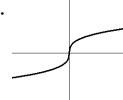


The leading coefficient, k, is **negative** / **positi**



The symmetry of the graph is even / odd / neither even nor odd .

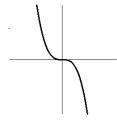
c.



The leading coefficient, k, is **negative** / **posit**

The power,
$$p$$
, is $\frac{\text{even}}{(\text{like }\pm 2, \pm 4,...)} / \frac{\text{odd}}{(\text{like }\pm 1, \pm 3,...)} / \frac{\text{fractional.}}{(\text{like }\pm \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}...)}$

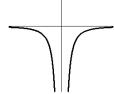
The symmetry of the graph is **even / odd / neither even nor odd**.



The leading coefficient, k, is **negative** / **posi**

The power,
$$p$$
, is
$$\frac{\text{even}}{(\text{like }\pm 2, \pm 4,...)} / \frac{\text{odd}}{(\text{like }\pm 1, \pm 3,...)} / \frac{\text{fractional.}}{(\text{like }\pm \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}...)}$$

The symmetry of the graph is even / odd / neither even nor odd .



The leading coefficient,
$$k$$
, is **negative** / **positive**.

The power, p , is $\frac{\text{even}}{(\text{like} \pm 2, \pm 4, ...)} / \frac{\text{odd}}{(\text{like} \pm 1, \pm 3, ...)} / \frac{\text{fractional.}}{(\text{like} \pm \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} ...)}$

The symmetry of the graph is even / odd / neither even nor odd .

f.



The leading coefficient, k, is **negative** /

The power,
$$p$$
, is
$$\frac{\text{even}}{(\text{like } \pm 2, \pm 4,...)} / \frac{\text{odd}}{(\text{like } \pm 1, \pm 3,...)} / \frac{\text{fractional.}}{(\text{like } \pm \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}...)}$$

The symmetry of the graph is even / odd / neither even nor odd .

11. Find the formula for the power function $y = kx^p$ given by each table. Show work.

\boldsymbol{x}	У
1	2
16	128

a.

 x
 y

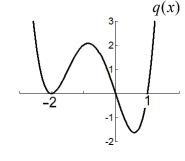
 81
 900

 625
 1500

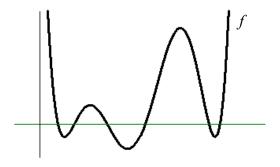
- **12.** Consider the polynomial $f(x) = 80 + 70x 30x^3 5x^7$.
 - a. Report the leading term.
 - **b**. Report the leading coefficient.
 - **c**. Report the degree of f(x).
 - **d.** Report the long run behavior of f(x). Specify as f(x) (Please circle one)
- 13. Consider the polynomial $g(x) = -20(x-50)^4(x+200)^2$.
 - a. Report the leading term.
 - **b**. Report the leading coefficient.
 - **c**. Report the degree of f(x).
 - **d.** Report the long run behavior of f(x). Specify as f(x) (Please circle one)
- 14. The graphs of the polynomials $p(x) = x^3 31x + 30$ and $q(x) = x^4 + 3x^3 4x$ show their zeros and their entire long run behavior.

 Write each polynomial in factored form as a **product of factors**.

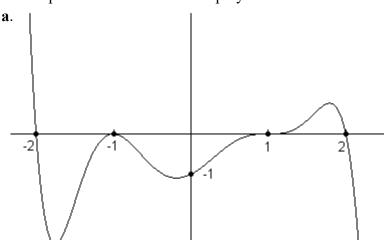


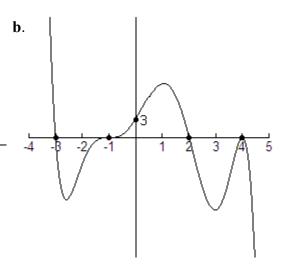


- 15. Suppose the polynomial f graphed in figure shows its entire long run behavior and has leading term ax^n , that is, $f(x) = ax^n + \text{remaining terms of lower degree}$
 - **a.** Is *a* positive or negative?
 - **b.** Is *n* even or odd?
 - c. Write the minimum possible value of n. $n \ge$ _____



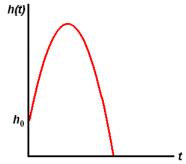
16. Write a possible formula for each polynomial function.





17. A model rocket is launched from the roof of a building with height h_0 . Its height above ground (in meters) t seconds later is given by

$$h = f(t) = -5t^2 + 40t + 20$$



Answer the following.

All work may be done on the calculator. No work need be shown!

- **a.** What is the value of h_0 , the initial height of the rocket? Please report with correct units
- **b.** When will the rocket hit the ground? Report accurate to two decimal places.
- c. What is the exact maximum height of the rocket? Please report with correct units.
- **d**. When will the rocket reach its maximum height? Please report with correct units.
- e. What length of time will the rocket be 15 feet or higher? Report accurate to two decimal places.
- f. Give the domain of the height of the rocket function (restricted according to the *context of the problem situation*.)
- g. Give the range of the height of the rocket function (restricted according to the *context of the problem situation*.)
- 18. Simplify $100^{2\log x^5}$
- **19.** Simplify $\log \left(\frac{x^{20}}{v^2} \right)$ (SELECT ONE)

A.
$$\left(\frac{x}{y}\right)^{18}$$
 B. $\frac{\log x^{20}}{\log y^2}$ C. $18\log(x-y)$ D. $20x-2y$ E. $\frac{10x}{y}$ F. $\left(\frac{x}{y}\right)^{10}$

G.
$$10\log(x-y)$$
 H. $20\log x - 2\log y$ I. $18\log(10x-y)$ J. $\frac{18x}{y}$

E.
$$\frac{y}{y}$$

mg

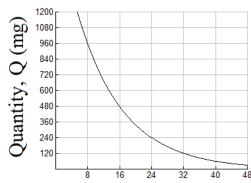
20. A function Q gives the amount, in mg of drug in a patient's body.

The function Q decays exponentially. Assume the pattern holds.

a. Complete the first entry in the table. Complete the next row in the table.

b.	Report the half-life, in hours
	hours

t, hours	f(t)
0	
8	960
16	480
24	240
32	120
A	



Time, t (hours)

- e. Every hour the patient loses ______ % and keeps ______ % of the drug. Report each to the nearest 0.1 percent.
- f. Find, to the nearest 0.01 hour, the time it takes for the amount of drug to first fall below 1000 mg. Show work. $t \approx$ hours
- **21**. Solve the equations.

Report both an exact solution (involving a logarithm) and an approximate solution to 3 decimal places.

- **a.** $3e^{5x-10} = 60$
- **b.** $7 \cdot 10^x + 10 = 70$ **c.** $26(0.5)^{x/7} + 40 = 48$
- **22**. Solve the equations.

Report both an exact solution and an approximate solution to 3 decimal places.

- **a**. $5\ln(3x) = 20$
- **b**. $5\log x + 7 = 10$
- 23. The relationship of pH to the hydrogen ion concentration C is pH = $-\log C$.

If the pH is 2.15 what is the hydrogen ion concentration? Report to three decimal places.

- A. 141.254 B. 0.332 C. 0.007 D. -141.254 E. -0.332 F. -0.007

24. Sales of an item increase by 50% every 9 years.

Assume sales f(t) continue to grow exponentially, where t is in years.

a. If 100 items were sold at year t = 0, complete the table to determine the number sold in year t = 9 and year t = 18. Report **whole number** of values.

t	f(t)
0	100
9	
18	

- **b.** At what effective percent rate does it increase **per year**? Round to the nearest **0.1** percent.
- **c.** Write a formula for f(t).

25. Sales of an item decrease by 98% every 6 years.

Assume sales f(t) continue to decay exponentially, where t is in years.

a. If 100,000 items were sold at year t = 0, complete the table to determine the number sold in year t = 6 and year t = 12. Report **whole number** of values.

t	f(t)
0	100,000
6	
12	

- **b.** At what effective percent rate does it decrease **per year**? Round to the nearest **0.1** percent.
- **c**. Write a formula for f(t).

26. If a function decays according to the formula $Q = 400(0.5)^{t/53}$ where t is in minutes.

- a. Report the half-life, in minutes.
- **b.** By what percent does it decay each minute?

27. A function increases at a rate of 17.76% per day.

a. Write a formula for the amount Q at day t, where Q_0 is the initial amount. Do not round any values.

- **b.** Find the doubling time.
 - i. Solve analytically and report your **exact** answer involving natural or common logarithms.
 - ii. Report an approximate answer of the doubling time accurate to days
- **c.** Find the tripling time.
 - i. Solve analytically and report your **exact** answer involving natural or common logarithms.
 - ii. Report an approximate answer of the tripling time accurate to days