

3. a. The graph of y = a(x) is a horizontal shift of the graph of y = f(x) to the right 6 so a(x) = f(x - 6).

b. The graph of y = b(x) is a horizontal and vertical reflection of the graph of y = f(x) so b(x) = -f(-x).

c. The graph of y = c(x) is a horizontal reflection, followed by a vertical compression by a factor of $\frac{1}{4}$, followed by a vertical shift down 4 units, so $c(x) = \frac{1}{4}f(-x) - 4$.

d. The graph of y = d(x) is a horizontal and vertical reflection, followed by a vertical shift up 6. This is the graph of b(x) shifted up 6 units.

- 4. Suppose the point P(3,-2) is a point on the graph of y = f(x)
 a. Suppose f(x) is even:
 - i. Report the coordinates of another point Q, which corresponds to P. (-3, -2)
 - ii. Plot the point Q on the grid provided.
 - **b.** Suppose f(x) is **odd**:
 - i. Report the coordinates of another point Q, which corresponds to P. (-3, 2)
 - ii. Plot the point Q on the grid provided.

5. a. To factor $h(t) = -16t^2 + 12t$, remove a greatest common factor of -4t: $h(t) = -16t^2 + 12t = -4t(4t - 3)$. *Alternatively:* h(t) = 4t(-4t + 3) is also correct. So also is h(t) = -16t(t - 0.75) or h(t) = 16t(-t + 0.75).

 $Q \bullet$

-4 -3 -2 -1

- **b.** To find the zeros of the function, set each factor equal to 0. Thus the zeros are t = 0 and t = 0.75.
- c. To find the vertex of the function, plot the zeros. The vertex is on the axis of symmetry which is midway between them. The *x*-coordinate of the vertex is $\frac{1}{2} \times 0.75 = 0.375$.

2 3

Find the *y*-coordinate of the vertex by substituting t = 0.375 in the formula or use a table with TblStart = 0 and Δ Tbl = 0.375. We have y = 2.25. So the vertex is (0.375, 2.25).

d. The equation of the axis of symmetry is x = 0.375. The equation t = 0.375 is also correct.

These two formulas are equivalent and either one is correct.

7. The graph of y = f(x) is shown. Use the graph of f(x) to write g(x) as a transformation of f(x). Find a formula for g(x) in terms of f(x).

The outputs of g(x) are *larger* than those for f(x) so it is a *vertical stretch*. Compare maximum points. The graph of g(x) is a vertical stretch of the graph of f(x) by a factor of k, where 3k = 12. Thus k = 4 and g(x) = 4f(x).

The outputs of g(x) are *smaller* than those for f(x) so it is a *vertical shrink*. Compare maximum points. The graph of g(x) is a vertical compression of the graph of f(x) by a factor of k, where 80k = -60. You could also compare minimum points: -40k = 30. In either case, k = -0.75 and g(x) = -0.75 f(x).

8. The graphs below are power functions of the form $y = k x^{p}$. Determine the following information. Circle the appropriate bold face words.

9. a.
$$x = 1, y = 2 \Rightarrow y = kx^{p}$$

$$2 = k(1)^{p}$$

$$= k$$

$$x = 16, y = 128 \Rightarrow y = 2x^{p}$$

$$128 = 2(16)^{p}$$
Divide both sides by 2.
$$64 = 16^{p}$$

$$p \log 16 = \log p$$

$$p = \frac{\log p}{\log 16}$$

Take logs of both sides .

$$p = \frac{\log 64}{\log 16} = 1.5$$

64

Therefore, $y = 2x^{1.5}$.

Check with a grapher that your table matches.

10. For $f(x) = 80 + 70x - 30x^3 - 5x^7$

a. leading term (kx^p) is $-5x^7$ b. leading coefficient (k) is -5d. Report the long run behavior of f(x). Specify as f(x) = f(x)**c**. degree (p) is 7

11. For $g(x) = -20(x-50)^4(x+200)^2 = -20x^6 + \text{ terms of lower degree}$

- **b**. leading coefficient (k) is -20 **c**. degree (p) is 6 **a**. leading term (kx^p) is $-20x^6$
- **d.** Report the long run behavior of f(x). not ty Specify as the

15. A model rocket is launched from the roof of a building with height h_0 . Its height above ground (in meters) *t* seconds later is given by

$$h = f(t) = -5t^2 + 40t + 20$$

Answer the following.

All work may be done on the calculator. No work need be shown!

- **a.** What is the value of h_0 , the initial height of the rocket? Please report with correct units 20 ml
- b. When will the rocket hit the ground? Report accurate to two decimal places. 8.47 sec

Use the table to find a viewing window.

h(t)

 h_0

- c. What is the exact maximum height of the rocket? Please report with correct units. 100
- **d.** When will the rocket reach its maximum height? Please report with correct units. **4 sec**

e. What length of time will the rocket be 15 feet or higher? Report accurate to two decimal places. 8.12 s

- **f**. Give the domain of the height of the rocket function (restricted according to the *context of the problem situation*.) $0 \le t \le 8.47$
- **g.** Give the range of the height of the rocket function (restricted according to the <u>context of the problem situation</u>.) $0 \le f(t) \le 100$

- 16. A function Q gives the amount, in mg of drug in a patient's body.The function Q decays exponentially. Assume the pattern holds.
 - **a.** Complete the first entry in the table. Complete the next row in the table.
 - **b.** Report the half-life, in hours Ans: 8 hours (This is the Δt .)
 - c. Find a formula for this function

 $Q = 1920(0.5)^{t/8}$ or $Q = 1920(0.917)^t$ since $b = (0.5)^{1/8} \approx 0.917$

- d. What was the original amount of medication taken? Ans. 1920 mg
- e. Every hour the patient loses <u>8.3</u>% and keeps <u>91.7</u>% of the drug. Report each to the nearest 0.1 percent.
- f. Find, to the nearest 0.01 hour, the time it takes for the amount of drug to first fall below 1000 mg. Show work. $t \approx -7.53$ hours

Method 1: Solve using logarithms. We can use common or natural logarithms. We will use natural.

Solve $1920(0.5)^{t/8} = 1000$ $(0.5)^{t/8} = 1000 / 1920$ $\ln(0.5)^{t/8} = \ln(1000 / 1920)$ $\frac{t}{8} \ln(0.5) = \ln(1000 / 1920)$ $t \ln(0.5) = 8 \ln(1000 / 1920)$ $t = \frac{8 \ln(1000 / 1920)}{\ln(0.5)} \approx 7.53$

<u>Method 2</u>: Using a table, you would show work as follows. Enter your formula $1920(0.5)^{(x/8)}$ in Y= and scroll. Set your step size to 0.01

Х	Y1
7.51	1001.6
7.52	1000.8
7.53	999.9
7.54	999.03
7.55	998.17

Method 3: Using a graph, you would show work as follows.

	<i>t</i> , hours	f(t)
	▶ 0	1920 = 960 · 2
/	8	960
	16	480
	24	240
<hr/>	32	120
	40 =32+8	$60 = 120 \cdot 0.5$

17. The relationship of pH to the hydrogen ion concentration C is $pH = -\log C$. If the pH is 2.15 what is the hydrogen ion concentration? Report to three decimal places.

Since the pH is 2.15 and pH = $-\log C$ we have $2.15 = -\log C$. Multiply both sides by -1: $\log C = -2.15$ Make both sides a power of 10: $10^{\log C} = 10^{-2.15}$ $C = 10^{-2.15} = \frac{1}{10^{2.15}} \approx 0.007$ Choice C.

18. Sales of an item increase by 50% every 9 years.

Assume sales f(t) continue to grow exponentially, where t is in years.

a. If 100 items were sold at year t = 0, complete the table to determine the number sold in year t = 9 and year t = 18. Report whole number of values. Ans: See the table to the right.

t	f(t)
0	100
9	$150 = 100 \times 1.5$
18	$225 = 150 \times 1.5$

b. At what effective percent rate does it increase <u>per year</u>? Round to the nearest **0.1** percent. Ans: 4.6% The formula for f(t) is $y = 100b^t$. Plug in a point, say t = 9, y = 150. Then solve for b.

$$100b^9 = 150$$

$$b^9 = \frac{150}{100} = 1.5$$

$$b = 1.5^{1/9} \approx 1.046$$

(Note that we didn't need the initial value 100 to find the value of b. We just needed the growth factor per 9-month period.) The growth factor per year is 1.046, so the growth rate is 4.6%.

c. $f(t) = 100(1.5)^{t/9}$ or $f(t) = 100(1.046)^t$ Either of these is correct.

19. Sales of an item decrease by 98% every 6 years.

Assume sales f(t) continue to decay exponentially, where t is in years a. If 100,000 items were sold at year t = 0, complete the table

to determine the number sold in year t = 0, complete the table Report whole number of values.

	t	f(t)
S.	0	100,000
	6	2000 = 100,000 x 0.02
	12	$40 = 2000 \times 0.02$

Ans: If we lose 98%, we keep only 2% = 0.02 every 6 years. See the table to the right.

b. At what effective percent rate does it decrease <u>per year</u>? Round to the nearest **0.1** percent. Ans: 47.9% The formula for f(t) is $y = 100000b^t$. Plug in a point, say t = 6, y = 2000. Then solve for b. 100,000 $b^6 = 2000$

$$b^6 = \frac{2000}{100,000} = 0.02$$

 $b = 0.02^{1/6} \approx 0.521$

(Note that we didn't need the initial value 100,000 to find the value of b.

We just needed the decay factor per 6-month period.)

The decay factor per year is 0.521, so we keep 52.1%, and thus lose 100% - 52.1% = 47.9% per year. c. $f(t) = 100000(0.02)^{t/6}$ or $f(t) = 100000(0.521)^t$ Either of these is correct. **20. a.** In 53 seconds, $P = 400(0.5)^{53/53} = 400 \times 0.5 = 200$

so the time it takes to decay to half its original amount is 53 minute. **b.** The function $Q = 400(0.5)^{t/53}$ can be written $Q = 400(0.5^{1/53})^t$ by laws of exponents and the fact that $\frac{t}{53} = \frac{1}{53}t$. Use a calculator to find $(0.5)^{1/53} \approx 0.987007$ so $Q \approx 400(0.987007)^t$. Each second we keep about 98.7%, so we lose 100% - 98.7% = 1.3% per minute.

21. a. $Q = Q_0 (1.1776)^t$

b. Set $Q_0(1.1776)^t = 2Q_0$

$$Q_0 (1.1776)^t = 2Q_0$$

(1.1776)^t = 2
$$\ln(1.1776)^t = \ln(2)$$

$$t\ln(1.1776) = \ln(2)$$

$$t = \frac{\ln(2)}{\ln(1.1776)} \approx 4.24$$

Divide both sides by Q_0 Take natural logs of both sides. Use the Bob Barker Property. Divide both sides by $\ln(1.1776)$

c. Set $Q_0(1.1776)^t = 3Q_0$

$$Q_0 (1.1776)^t = 3Q_0 (1.1776)^t = 3 ln(1.1776)^t = ln(3) tln(1.1776) = ln(3) t = \frac{ln(3)}{ln(1.1776)} \approx 6.72$$

Divide both sides by Q_0 Take natural logs of both sides. Use the "Bob Barker Property". Divide both sides by $\ln(1.1776)$