MA 15300 Student Learning Outcomes

The learning outcomes listed in the Purdue online catalog for MA 15300 are as follows:

- 1. To correctly perform algebraic operations, to solve algebraic equations of degree two, to perform operations with exponents and radicals.
- 2. To sketch graphs of certain polynomial, exponential and logarithmic functions.
- 3. To solve systems of equations and inequalities.

Additional learning outcomes are listed below.

Relations and Function

- 1. Determine if a relation represents y as a function of x.
- 2. Use and interpret functional notation.

The Average Rate of Change

- 1. Find and interpret the average rate of change.
- 2. Represent the average rate of change on a graph as the slope of a segment.
- 3. Use the function notation for the average rate of change.

Finding formulas of linear functions if given an initial value

- 1. Use the average rate of change to determine if a function is linear.
- 2. Given the equation of a linear function, find and interpret its slope and axis intercepts and sketch its graph.
- 3. Find a linear model if given an initial value and an average rate of change.

Finding formulas of linear functions if not given an initial value

- 1. Find a linear model if given an initial value and an average rate of change.
- 2. Find a linear model if given any value (not necessarily its initial value) and an average rate of change.
- 3. Find a linear model if given any two points.
- 4. Determine when two lines are parallel and when they are perpendicular.
- 5. Determine the slope and equation of a horizontal line and a vertical line.
- 6. Construct linear models and find intersection points.

Modeling with Linear Functions

- 1. Determine the following geometric properties for linear functions from their equations:
 - when their y-intercepts are positive or negative
 - when they are increasing or decreasing (or neither)
- 2. Construct linear models and find intersection points to solve problems and make predictions.

Input and Output

- 1. Use a graph, table, or an equation to evaluate a function or find its input(s) given its output.
 - Review of algebraic operations, exponents, radicals and rational exponents, and fractional expressions.
- 2. Evaluate functions at given input.
- 3. Solve systems of equations and inequalities and interpret the results.

Domain and Range

- 1. Use a graph to report the domain and range of a function.
- 2. Report the domain and range of a function given the formula.
 - Review of algebraic operations, exponents, radicals and rational exponents, and fractional expressions.

Composition of Functions

- 1. Create a new functions by combining them with the operations of addition, subtraction, multiplication, and division.
- 2. Use function composition to create a new functions.
 - Review of algebraic operations, exponents, radicals and rational exponents, and fractional expressions.

Inverse Functions

- 1. Use notation for inverse functions given a graph, formula, table, or words.
- 2. Interpret expressions or equations which involve function notation and inverse function notation.
- 3. If given the formula for a function, find the formula of the inverse function.

Concavity

- 1. Determine the intervals of x for which is increasing or decreasing.
- 2. Determine the intervals of x for which is concave up or down.

Exponential Growth and Decay

- 1. Given a formula, get an annual growth rate (or decay rate), as well as an initial amount.
- 2. Given an annual growth rate (or decay rate) and an initial amount,
 - a. write a formula $y = ab^x$ or
 - b. know what a and b mean in the formula $y = ab^x$ or
 - c. predict a future value of y for some x and given a value of y, find a value of x

Finding Formulas of Exponential Functions and Comparing Linear and Exponential Functions

- 1. Given some data (which is **not** an initial amount).
 - a. write a formula $y = ab^x$ or
 - b. know what a and b mean in the formula $y = ab^x$ or
 - c. predict a future value of y for some x and given a value of y, find a value of x.
- 2. Compare linear and exponential functions and find their intersections points.

Graphs of Exponential Functions and Horizontal Asymptotes

- 1. Determine what a and b mean in the formula $y = ab^x$.
- 2. Describe the general shape, concavity, domain, range, and asymptotes of the function $y = ab^x$.

Compound Interest

- 1. Use the compound interest formula $A = P(1 + r/n)^{nt}$ appropriately and relate it to the growth formula $A = P(1 + r/n)^{nt}$
- 2. Relate the compound interest formula $A = P(1 + r/n)^{nt}$ to the growth formula $A = P(1 + r)^{t}$ and $A = Pe^{rt}$.
- 3. Use the compound interest formula $A = P(1 + r/n)^{nt}$ or $A = Pe^{rt}$. Find A, P, or t if given the remaining parameters.

What is a Logarithm?

- 1. Rewrite an equation in exponential form into logarithmic form and vice versa.
- 2. Find the value of a logarithm written to any base, as well as common and natural logarithms.
- 3. Use the inverse properties of logarithms

Properties of Logarithms

- 1. Use the inverse properties of logarithms
- 2. Rewrite a logarithmic expression using properties of logs

Using Inverse Properties to Solve Equations for Exact Answers

- 1. Use inverse properties to find both exact and approximate solutions to *exponential* equations.
- 2. Use inverse properties to find both exact and approximate solutions to logarithmic equations

Doubling Time, Tripling Time, and Half-Life

- 1. Given a function which models exponential growth, find the doubling or tripling time and the percent growth per unit time period.
- 2. If given the doubling time or percent rate over a given time period, write a possible formula
- 3. Given a function which models exponential decay, find half-life and the percent loss per unit.
- 4. If given the half-life or percent rate over a given time period, write a possible formula

The Graph of the Logarithm and Vertical Asymptotes

- 1. Report the concavity, domain, range, asymptotes, intercepts of the graph of $y = \log x$ or $y = \ln x$.
- 2 .Report the concavity, domain, range, asymptotes, intercepts of the graph of $y = \log_b x$.

Logs as Re-Expressions of Large or Small Quantities

- 1. Use the logarithm to re-express the intensity of an earthquake as a Richter scale magnitude and compare earthquake intensities.
- 2. Use the relationship between pH and the hydrogen ion concentration [H⁺] to find [H⁺] if given the pH.
- 3. Use the relationship between pH and the hydrogen ion concentration [H⁺] to find pH if given [H⁺].

Translation of Functions

- 1. Understand vertical shifts of a function as an *outside additive* change to the function rule.
- 2. Understand horizontal shifts of a function as an *inside additive* change to the function rule.
- 3. Given the graph and formula of a parent function and a transformation, find the graph and formula of its child graph.
- 4. Given the graph and formula of a parent function and its child graph, describe the transformation and find its formula.

Horizontal and Vertical Reflections

- 1. Graph a function which has been vertically reflected (about the x-axis) or horizontally reflected (about the y-axis).
- 2. When multiplying a function formula by -1, determine how this affects the graph:
 - relate an outside change to the function formula to a change in the outputs.
 - relate an inside change to the function formula to a change in the inputs.
- 3. Write the formula of a vertical or horizontal reflection of a function if given its graph or sketch a graph if given its formula.
- 4. Combine reflections with shift transformations.
- 5. Given the graph and formula of a parent function and a transformation, find the graph and formula of its child graph.
- 6. Given the graph and formula of a parent function and its child graph, describe the transformation and find its formula.

The Symmetry of Even and Odd Functions

- 1. Identify whether a function is odd, even, or neither by looking at its graph, equation or table.
- 2. If given that a function is odd or even and a point on its graph, determine another point.

Vertical Stretches and Compressions

- 1. Graph a function which has been vertically stretched or vertically compressed.
- 2. If c is any positive number, determine how the graph of y = cf(x) affects the graph of y = f(x) for c < 1 and c > 1.
- 3. Write the formula of a vertical stretch of a function if given its graph or sketch a graph if given its formula.
- 4. Write the formula of a vertical compression of a function if given its graph or sketch a graph if given its formula.

Quadratic Functions - Three Ways to Write the Formula

- 1. Determine the zeros of a quadratic function.
 - Review of factoring.
- 2. Write the formula of a quadratic function in vertex form, factored form, or expanded (standard) form.

Applications of Quadratic Functions

- 1. Determine the *y*-intercept and the axis of symmetry of a quadratic function.
- 2. Solve quadratic equations algebraically, graphically, and through the use of the table.
- 3. Find and interpret the zeros of a quadratic function using a variety of methods.
- 4. Use a graphing calculator to graph a function in an appropriate viewing window. Use built-in calculator features such as an intersection point finder, maximum/minimum finder, or zero finder to solve problems.

Power Functions – Shapes

- 1. Identify if a function is a power function $y = kx^p$. If so, report k and p.
- 2. Sketch a rough graph of a power function and report its properties such as domain, range, asymptotes, and end behavior.

Finding the Formula of a Power Function

- 1. Find the formula for a power function $f(x) = kx^p$ if given that it passes through two points (a, f(a)) and (b, f(b)), where a = 1.
- 2. Find the formula for a power function $f(x) = kx^p$ if given that it passes through two points (a, f(a)) and (b, f(b)), where $a \ne 1$.

Introduction to Polynomials and Long Run Behavior

- 1. Identify the degree, leading term, leading coefficient, and long-run behavior of a polynomial if given in expanded or factored form.
- 2. Use the leading term of a polynomial to report its long run behavior.

Short Run Behavior of Polynomials

- 1. Use factoring to find the zeros of a polynomial.
- 2. Determine the zeros of a polynomial if given its equation in expanded or factored form. If necessary, use a graphing calculator or try to factor.
- 3. Rewrite a polynomial function in expanded form in factored form by using the zeros and the multiplicity (or behavior of the function at each zero)
- 4. Find the formula of a polynomial function if given its graph.

Introduction to Rational Functions and Long Run Behavior

- 1. Find the power function model of a rational function.
- 2. Use the power function model of a rational function to determine its long run behavior.
- 3. Report horizontal asymptotes of a rational function, if they exist.

Asymptotes and Intercepts

- 1. Find the power function model of a rational function.
- 2. Use the power function model of a rational function to determine its long run behavior.
- 3. Report the horizontal asymptote of a rational function, if it exists.
- 4. Report any vertical asymptotes of a rational function.
- 5. Report any intercepts of a rational function.

Finding the Formula of a Rational Function

- 1. Report the intercepts and asymptotes of a rational function.
- 2. Use a shift transformation of $y = k/x^p$ to write the formula of a rational function as $y = k/(x a)^p + b$.
- 3. Use long run and short run behavior to write the formula of a rational function as y = p(x)/q(x).