For each rational function in 1-5,

- a. Find the power function it most closely resembles for very large values of x.
- b. Describe the **long run** behavior by completing the boxes:

As
$$x \to -\infty$$
, then $y \to [$; as $x \to \infty$, then $y \to [$

c. Sketch the power function which has the same **long run** behavior. Pick from these choices: The *short run* behavior is covered up to emphasize that only the **long run** behavior is being mirrored.

d. Find the horizontal asymptote, if there is one. If none, state so.

1.
$$f(x) = \underbrace{\frac{8x^3 + 5x - 9}{4x^7 + 200x^2 - 6}}$$

2.
$$f(x) = \frac{(36x^3 + 3x - 7)}{x^2 - 4x^3}$$

3.
$$f(x) = \frac{3+4x}{2+7x}$$

4.
$$f(x) = \frac{10x^6 - 4x}{(x - 3)(x - 4)}$$

= $\frac{10x^6 - 4x}{(x^2 + \text{remaining terms})}$

5.
$$f(x) = \frac{2(x-2)^2(x-6)}{9(x-5)^3}$$
$$= \frac{2x^3 + \text{remaining terms}}{9x^3 + \text{remaining terms}}$$

a. Power function model: $y = \frac{8x^3}{4x^7} = \frac{2}{x^4}$ (simplify) b. As $x \to -\infty$, then $y \to [0]$; as $x \to \infty$, then $y \to [$ c. Long run behavior looks like this power function d. horizontal asymptote: y = 0a. Power function model: $y = \frac{1}{2}$ (simplify) b. As $x \to -\infty$, then $y \to |-9$; as $x \to -\infty$, then $y \to -\infty$ c. Long run behavior looks like this power function: d. horizontal asymptote: y = -9a. Power function model: $y = \frac{7x}{7x} = \frac{1}{7}$ (simplify) b. As $x \to -\infty$, then $y \to \left| \frac{4}{7} \right|$; as $x \to \infty$, then $y \to \infty$ c. Long run behavior looks like this power function: d. horizontal asymptote: $y = \frac{4}{7}$ 10x $x = 10x^4$ $x^{\overline{2}}$ a. Power function model: y =(simplify) b. As $x \to -\infty$, then $y \to \infty$; as $x \to \infty$, then $y \to z$ c. Long run behavior looks like this power function: d. horizontal asymptote: None a. Power function model: $y = \overline{9x^3} - 9$ (simplify) b. As $x \to -\infty$, then $y \to \left| \frac{2}{9} \right|$; as $x \to \infty$, then $y \to \infty$ c. Long run behavior looks like this power function: d. horizontal asymptote: $y = \frac{2}{9}$

For the functions below, report the horizontal asymptote, if there is one. If none, state so. 7(x+2)(x+5)

6.
$$f(x) = \frac{f(x+2)(x+3)}{11(x-5)}$$

7. $f(x) = \frac{12x^2+1}{3x^2+2} + 3$
8. $f(x) = \frac{25x^2+38}{x(1+0.02x)}$
9. $f(x) = \frac{0x}{3x^2+10} + 2$
10. $f(x) = \frac{3(x+5)^2(x-4)}{4(x-6)^3(x-1)}$
9. $f(x) = \frac{3(x+5)^2(x-4)}{4(x-6)^3(x-1)}$

DEFAILED SOLUTIONS

6. $f(x) = \frac{7(x+2)(x+5)}{11(x-5)}$ looks like the power function $\frac{7x^2}{11x} = \frac{7x}{11}$ for very large values of x. This is a line of positive slope. There is no horizontal line this function approaches. As $x \to -\infty$, then $y \to -\infty$; as $x \to \infty$, then $y \to \infty$. So, no horizontal asymptote. 7. $f(x) = \frac{12x^2 + 1}{3x^2 + 2} + 3$ is a vertical shift of the function $y = \frac{12x^2 + 1}{3x^2 + 2}$ up 3. Since $y = \frac{12x^2 + 1}{3x^2 + 2}$ looks like the power function $\frac{12x^2}{3x^2} = 4$ for very large values of x, the graph of $y = \frac{12x^2 + 1}{3x^2 + 2}$ would have a horizontal asymptote of y = 4. Therefore, the shifted function $f(x) = \frac{12x^2 + 1}{3x^2 + 2} + 3$ would have a horizontal asymptote of y = 7. Note that for very large values of x, $f(x) = \frac{12x^2 + 1}{3x^2 + 2} + 3 \implies \frac{12x^2}{3x^2} + 3 = 4 + 3 = 7$. 8. $f(x) = \frac{25x^2 + 38}{x(1+0.02x)}$ looks like the power function $\frac{25x^2}{0.02x^2} = \frac{25}{0.02} = 1250$ for very large values of x. Therefore, it has a horizontal asymptote of y = 1250. 9. $f(x) = \frac{6x}{3x^2 + 10} + 2$ is a vertical shift of the function $y = \frac{6x}{3x^2 + 10}$ up 2. Since $y = \frac{6x}{3x^2 + 10}$ looks like the power function $\frac{6x}{3x^2} = \frac{2}{x}$ for very large values of x, the graph of $y = \frac{6x}{3x^2 + 10}$ would have a horizontal asymptote of y = 0. Therefore, the shifted function $f(x) = \frac{6x}{3x^2 + 10} + 2$ would have a horizontal asymptote of y = 2. Note that for very large values of x, $\frac{6x}{2x^2} + 2 = \frac{2}{x} + 2 \rightarrow 0 + 2$ $2(x+5)^2(x-4) = 2x^3 + romaini$ - 2

10.
$$f(x) = \frac{3(x+5)^2(x-4)}{4(x-6)^3(x-1)} = \frac{3x^3 + \text{remaining terms}}{4x^4 + \text{remaining terms}}, \text{ so it looks like the power function } \frac{3x^3}{4x^4}$$

for very large values of x. Note that $\frac{3x^3}{4x^4} = \frac{3}{4x}$ approaches 0 as x increases without bound, so $f(x) = \frac{3(x+5)^2(x-4)}{4(x-6)^3(x-1)}$ has a horizontal asymptote of $y = 0$.