Assume a and b are any constants, and m, n and p are positive integers.
Then as $x \rightarrow \pm \infty, f(x)=\frac{a x^{m}+\text { remaining terms of lower degree }}{b x^{n}+\text { remaining terms of lower degree }}$ has the same end behavior as $y=\frac{a x^{m}}{b x^{n}}$. The short run behavior is covered up to emphasize that only the end behavior is being mirrored.

If the degree m of the numerator is larger than the degree n of the denominator, then
as $x \rightarrow \pm \infty, f(x)=\frac{a x^{m}+\text { remaining terms }}{b x^{n}+\text { remaining terms }} \rightarrow y=\frac{a x^{m}}{b x^{n}} \rightarrow y=\frac{a x^{p}}{b}$
Assume $p=m-n$

as $x \rightarrow \pm \infty, y \rightarrow-\infty$

$$
p=2,4,6, \ldots
$$

 as $x \rightarrow \infty, y \rightarrow \infty \quad$ as $x \rightarrow \infty, y \rightarrow-\infty$

$$
p=1
$$

as $x \rightarrow-\infty, y \rightarrow-\infty \quad$ as $x \rightarrow-\infty, y \rightarrow \infty$ as $x \rightarrow \infty, y \rightarrow \infty$ as $x \rightarrow \infty, y \rightarrow-\infty$

For this case $f(x)$ has no horizontal asymptote.
 as $x \rightarrow-\infty, y \rightarrow-\infty \quad$ as $x \rightarrow-\infty, y \rightarrow \infty$

 as $x \rightarrow \pm \infty, y \rightarrow 0 \quad$ as $x \rightarrow \pm \infty, y \rightarrow 0$

$$
\Longrightarrow \quad p=1,3,5,7, \ldots
$$

as $x \rightarrow \pm \infty, y \rightarrow 0$

For this case $f(x)$ has a horizontal asymptote. It is the line $y=0$.

If the degree m of the numerator is equal to the degree n of the denominator, then
as $x \rightarrow \pm \infty, f(x)=\frac{a x^{m}+\text { remaining terms }}{b x^{n}+\text { remaining terms }} \rightarrow y=\frac{a x^{m}}{b x^{n}} \rightarrow \frac{a x^{p}}{b x^{p}}=\frac{a}{b}$
Assume $p=m=n$

as $x \rightarrow \pm \infty, y \rightarrow \frac{a}{b}$
$\frac{a}{b}>0$
as $x \rightarrow \pm \infty, y \rightarrow \frac{a}{b}$
$\frac{a}{b}<0$

For this case $f(x)$ has a horizontal asymptote. It is the line $y=\frac{a}{b}$.

