Why are the logarithmic properties true?

- 1. Complete the blanks and boxes to show $\log_{h} QR = \log_{h} Q + \log_{h} R$
 - a. Let $\log_b Q = x$.
 - b. Write the equation in 1a in exponential form:
 - c. Let $\log_b R = y$.
 - d. Write the equation in 1c in exponential form:
 - e. $QR = b^x \cdot |$ if we substitute the results from 1b and 1d.

 - g. Now write the equation in 1f in logarithmic form: (QR) = b means log =
 - h. Eliminate x and y in the equation in 1g by substituting the equations in 1a and 1c:
- 2. Complete the blanks and boxes to show $\log_b Q^k = k \cdot \log_b Q$
 - a. Let $\log_b Q = x$.
 - b. Write the equation in 2a in exponential form:
 - c. $Q^k = \left(\Box \right)^k$ if we substitute 2b.

 - e. Now write the equation in 2d in logarithmic form: $(Q^k) = b$ means log =
 - f. Eliminate *x* in the equation in 2e by substituting the equation in 2a:
- 3. Complete the boxes to show $\log_b \frac{Q}{R} = \log_b Q \log_b R$

Since
$$\frac{1}{R} = R^{\square}$$
, we have $\log_b \frac{Q}{R} = \log_b (Q \cdot \square)$
= $\log_b (Q \cdot R^{\square})$

= _____using the property in 1h above.

using the property in 2f above.