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Setting environmental standards:
A statistician’s perspective
Peter Guttorp

ABSTRACT

Governmental environmental protection is commonly implemen-

ted by specifying a standard value of pollution, measured or actual,

not to be exceeded. This article considers the standard for ozone

pollution in the United States, interprets it using a hypothesis test-

ing framework, and shows (in a simplified setting) how a statistician

could implement this standard. The statistician’s implementation

is contrasted with the implementation by the U.S. Environmental

Protection Agency. Some of the issues raised by these contrasting

implementations are illustrated using ozone data from three areas

in the United States. This article also examines potential biases in

using data collected for standard compliance monitoring purposes

to assess the health effects of ozone.

INTRODUCTION

To protect the population from adverse health effects caused by

the pollution of air, water, and soil, many governments choose to

set a standard, i.e., a value (such as daily average concentration of

a particular pollutant) not to be exceeded or to be exceeded only

infrequently. In addition to the standard, an implementation rule,

indicating under what circumstances the standard will be consid-

ered violated, is commonly part of the regulations. Penalties and

other procedures for dealing with regions out of compliance with

the standard may also be part of the legislation.

This article considers the U.S. National Ambient Air Quality

Standards (NAAQS) and particularly the standard for ozone. Be-

cause of a complicated legal issue, there are currently two ozone

standards in effect: the 1-hr standard introduced in 1990, and the

8-hr standard introduced in 1997. The focus here is on the older

one. This standard requires states to maintain an air quality such

that the expected annual number of daily maximum hourly ozone

averages exceeding 0.12 ppm is equal to or less than 1. The imple-

mentation rule allows the state no more than three daily maximum

hourly average measurements in excess of 0.12 ppm during 3 yr at
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each approved monitoring site. The consequences of

violating the standard depend on the severity of the

noncompliance: if the measurements placing the state

out of compliance exceed 0.18 ppm, the state must

develop a comprehensive air qualitymodel, demonstrate

that themodel can reproduce current data, and develop

a plan for air quality improvement, which, according to

the model, eventually will put the state in compliance.

Because ozone is a secondary pollutant, resulting

from photochemical reactions in the atmosphere in-

volving nitrous oxides and volatile organic compounds,

any ozone abatement plan will need to address the pri-

mary pollutants.An additional consequence is that there

are no point sources of ozone, and peak ozone con-

centrations typically occur downwind from the pri-

mary pollution sources.

Previous work looking at statistical aspects of en-

vironmental standards include Watson and Downing

(1976), O’Brien et al. (1991), Symons et al. (1993),

Barnett and O’Hagan (1997), Carbonez et al. (1999),

and Cox et al. (1999). This article begins by outlining

a statistician’s first approach to the problem of deter-

mining compliance with the ozone standard. Such an

approach is naturally phrased as a fairly standard hy-

pothesis testing problem, but the choice of null hypothe-

sis may be surprising at first. The section on the EPA

compliance criterion analyzes in a similar fashion the

implementation rule of the U.S. Environmental Pro-

tection Agency (EPA) when viewed as a hypothesis

testing rule. The section on data analysis includes data

analyses from different parts of the United States and

a discussion of the validity of the simplifying assump-

tions made in the preceding two sections. A statistical

framework for setting environmental standards has been

developed by Barnett and O’Hagan (1997), and how

the framework can be applied to theUnitedStates ozone

standard is outlined in the section on the Barnett-

O’Hagan setup. Finally, the section on network mon-

itoring bias looks at the potential bias of using com-

pliancemonitoring networks to assess the health effects

of air pollution.

A STATISTICAL SETUP

Consider a monitoring network with I sites, and let

Ni,t denote the number of daily maximum hourly

ozone averages in excess of 0.12 ppm at site i (i = 1,

. . ., I) during year t (t = 1, . . ., T). Let u = ENi,t, where

E stands for expected value. For simplicity, let us first

consider the case I = 1. Then the United States 1-hr

ozone standard requires that u � 1. A natural

approach (at least for a classically schooled statisti-

cian) to the decision as to whether the standard has

been met is a hypothesis test. Because the Clean Air

Act (CAA) requires the EPA first and foremost to

protect people from the adverse health effects of air

pollution, the more serious error would be to declare

a region in compliance when it is not. According to

the classical Neyman-Pearson setup (e.g., Bickel and

Doksum, 1977, section 5.2), the null hypothesis should

be that hypothesis for which false rejection is the more

serious error (than false acceptance). Hence, in the

Neyman-Pearson setup, the null hypothesis must be

that of noncompliance, i.e., testing H0: u > 1 against

HA: u � 1. Of course, from a practical point of view,

although this null hypothesis is acceptable to the EPA,

it would be of some concern to individual states that

run the risk of being falsely accused of violating the

standard.

Assume now that different days of the year are in-

dependent. If the monitoring site lies on the boundary

between the null and alternative hypotheses, i.e., has

u = 1, we would have N1,t � Bin(365, 1/365), where

Bin stands for the binomial distribution (Bickel and

Doksum, 1977, A 13.1), i.e.,

PðNi;t ¼ kÞ ¼ 365

k

� �
1

365

� �k 364

365

� �365�k

Because the binomial distribution is an exponential

family (Bickel and Doksum, 1977, section 2.3) with a

monotone likelihood ratio, the probability of type I

error (rejecting H0 when it is true) is bounded among

all u > 1 by the value when u = 1. If we now, as the

EPA implementation rule requires, base the decision

on T = 3 yr of data, we have N ¼
P3

t¼1N1;t � Bin(3 �
365, 1/365), or, to a very good approximation, a Poisson

distribution with parameter 3 (Bickel and Doksum,

1977, A.13.9), abbreviated Po(3), i.e.,

PðN ¼ kÞ � 3k

k!
e�3

The optimal test (Bickel and Doksum, 1977, sec-

tion 6.2) is to reject for small values of N, and a level

0.05 test rejects only if N = 0. In other words, from

the Neyman-Pearson testing point of view, any ex-

ceedance of 0.12 ppm during a 3-yr period would

render a site in violation of the standard. Using the

level 0.05 is, as always in hypothesis testing, an arbitrary
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choice, which must be made by the standard-setting

agency. Although this test is the most powerful test

at level 0.05, it is not actually very powerful. For ex-

ample, if u = 0.4, the probability of declaring a state

in compliance (based on a single monitor observed for

3 yr) is only 0.30.

Considering now I independent sites, sufficiency sug-
gests basing a test on NI ¼

PI
i¼1

P3
t¼1Ni;3 ~� Poð3IÞ.

Again, the level a test would reject for values of the

test statistic below a critical value CI,a, chosen so

that P(NI�CI,a) � a.
In the analysis in this section (at least) three sim-

plifying assumptions have been made: that Ni,t is an

observable random variable, that subsequent days are

independent, and that different sites in the state are

independent. These assumptions are discussed in the

section on data analysis.

THE EPA COMPLIANCE CRITERION

Following the same line of thought as in the previous

section, first consider the EPA implementation rule

for a single site in a state. The rule declares a site in

compliance whenever N � 3, which has probability

a = 0.647 when u = 1 under the assumption of con-

secutive daily maxima being independent. Because no

statistician would even consider values of a this high,

one may argue that the EPA are not performing their

mission under the CAA: given that the CAA requires

the EPA to protect public health and that the agency

has decided that 0.12 ppm daily maximum hourly

average is a limit above which serious health risks to

the public occur, the agency appears to make type I

errors much too frequently under their implementa-

tion rule.

One naturally wonders how the implementation

rule was arrived at. The explanation in the regulation

(Title 40 of U.S. Code of Federal Regulations Part 50,

Appendix H) says:

The ozone standard states that the expected num-
ber of exceedances per year must be less than
or equal to 1. The statistical term ‘‘expected
number’’ is basically an arithmetic average. The
following example explains what it would mean
for an area to be in compliance with this type of
standard. Suppose a monitoring station records
a valid daily maximum hourly average ozone
value for every day of the year during the past
3 years. At the end of each year, the number of

days with maximum hourly concentrations
above 120 ppb is determined and this number
is averaged with the results of previous years.
As long as this average remains less than or
equal to 1, the area is in compliance.

In other words, the quoted section of the U.S.

Code requires the law of large numbers to be applied

to n = 3.

For a region with more than one site, the EPA im-

plementation rule uses the test statistic TI ¼ maxi � IP3
t¼1Ni;t, again rejecting H0 if TI � 3. For example,

assuming again spatially independent sites, we find for

I = 7 that a = 0.05. The corresponding rule from

the section on the statistical setup would be to re-

ject when NI � 13, regardless of where in the net-

work the violations have occurred. It should be noted

here that the calculation is made assuming that all

the sites have u = 1, so it would be quite unlikely,

for example, that one site would have 13 violations,

and that all the others have none. In fact, using a

simple multinomial calculation, with a frequency of

about 0.36, the maximum number of violations at any

of the seven sites, given that 13 violations occurred,

would be three, so both implementations agree about

one-third of the time.

The power in a network with seven independent

sites, using the optimal test from the section on sta-

tistical setup, reaches 0.95 at u = 0.4; for instance, a

state with an average of one violation every 2.5 yr at

each site can be reasonably comfortable that it will

not falsely be declared in violation of the standard.

DATA ANALYSIS

This section considers data from three heavily pol-

luted regions in the United States: the Chicago area in

Illinois, the South Coast region of California, and the

Houston area in Texas. Previous analyses (e.g., Carroll

et al., 1997; Cox et al., 1999) have indicated that a

square root transformation frequently has the effect

of symmetrizing the daily maximum of hourly ozone

data, making a Gaussian assumption reasonable (even

in the tails). The data are available from the AIRS

database (Chicago and Houston; http://www.epa.gov

/ttn/airs/airsaqs/index.htm) and from the California

Air Resources Board (South Coast California; http://

www.arb.ca.gov/aqd/aqd.htm). Table 1 contains sum-

mary statistics for the three data sets. The EPA defines
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the ozone season to be the entire year in California and

Texas, and April 1–October 31 in Illinois.

If, as suggested above, the square root of the daily

maximum of hourly ozone has a Gaussian distribution

with mean m and standard deviation s, we have the

following:

P ðexceedance of level cÞ ¼ 1� F

ffiffiffi
c

p
� m
s

� �� �,
F

m
s

� �
ð1Þ

where the denominator arises from the fact that ozone

measurements must be positive. Using the standard

deviation for the Houston network, a simple Gaussian

calculation shows that one expected exceedance (for a

single station) would correspond to a mean of 0.146

on the square root scale, or about 0.022 ppm on the

raw scale. Hence, to bring Houston into compliance,

the average daily maximum hourly readings must be

reduced by a factor of 3 from the current average of

0.066 ppm. Of course, corrective action that reduces

only high readings may also be possible.

The considerations so far in the article have all

assumed (at least implicitly) that the quantity Ni,t,

the number of exceedances at site i in year t, is an

observable random variable, i.e., that we can deter-

mine without error the number of exceedances of a

given level at a site from the measured daily maximum

hourly ozone averages. Strictly speaking, we cannot be-

cause the measurements are made with error. To take

the measurement error into account, we need to make a

conditional calculation. Assume, for simplicity, a Gauss-

ian additive measurement model on the square root

scale, namely, Y = Z + e, where Y is the observed square

root daily maximum hourly ozone average; Z is the

square root of true maximum daily hourly ozone aver-

age, assumed N(m, s2); and e is an independent mea-

surement error, assumedN(0, t2). Here, s2 corresponds
to the natural variability of the ozone field, and t2 corre-

sponds to the uncertainty caused by imprecise mea-

surement techniques. Then, we have, using a standard

regression calculation for the case m ¼
ffiffiffiffiffiffiffiffiffiffi
0:12

p
, that

PðZ >
ffiffiffiffiffiffiffiffiffiffi
0:12

p
jZ � 0;Y ¼ yÞ

¼ Pðe < y�
ffiffiffiffiffiffiffiffiffiffi
0:12

p
je � y;Y ¼ yÞ

¼ F
y�

ffiffiffiffiffiffiffiffiffiffi
0:12

p

s
D2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 1

p
 ! !,

F
y

s
D2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 1

p
 ! !

(2)

where D2 = s2/t2 is the signal-to-noise ratio. Equation

(2) roughly corresponds to multiplying the standard

deviation of the underlying pollution field by a factor offfiffiffiffiffiffiffiffiffi
D2þ1

p

D2

� �
. For the values used below, the denominator is

approximately 1.

The analysis in Cox et al (1999) for the California

Central Valley data indicates that the standard devia-

tion t of the measurement errors for common instru-

ments are about 0.020–0.027 on the square root ppm

scale, corresponding to an error standard deviation of

the raw measurements of about 0.002–0.003 ppm at a

mean level of 0.12 ppm. Comparing these values with

those in Table 1 indicates that themeasurement error is

a fairly large proportion of theobserved variability.Using

t2 = 0.000415, a value near the lower range above, yields

s2 = 0.00381 for the South Coast California data, and

the multiplier
ffiffiffiffiffiffiffiffiffi
D2þ1

p

D2

� �
is equal to 0.35. Thus, taking a

measurement reduces the uncertainty by a factor of 3

(but does not eliminate it). Figure 1 shows the condi-

tional probability, given an observation of y, that the
true field is actually above 0.12 ppm. For this prob-

ability to be larger than 0.95, we need an actual reading

of at least 0.146 ppm. To make the probability larger

than 0.99, we need to observe at least 0.157 ppm.

The assumption of independent and identically dis-

tributed data is overly simplistic. First, it fails to con-

sider the seasonal distribution of ozone, which is very

pronounced in the data considered here. For example,

Table 1. Regional Ozone Data, 1989–1991

Region

Mean Ozone

Levels*
Standard Deviation

of Ozone Levels*
Number of

Monitoring Stations

Number of

Exceedances

of 0.12 ppm

Number of Days

Monitored

Chicago 0.218 0.043 10 15 642

South Coast (California) 0.250 0.068 8 661 1095

Houston 0.254 0.072 8 265 1095

*Calculated on square root scale (raw data in ppm).
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in the California Southern Coast data, the ozone levels

are lower in the winter and higher in the summer. This

seasonal effect can be dealt with in a more realistic fash-

ion using time-varying mean and variance. Of more se-

rious concern, perhaps, is the fact that the time series of

daily maximum hourly average ozone shows some auto-

correlation.Data analysis indicates that an autoregressive

model of order 2 (Percival andWalden, 1993, p. 44) can

account for most of the autocorrelation. The calcula-

tions for single-station exceedances can be redone, using

simulation techniques, for a more realistic model.

Finally, the spatial correlations need to be consid-

ered. In the Chicago data set, the site-to-site correla-

tions are 0.7 or higher. Hence, the calculations earlier in

the article, assuming spatially independent stations, are

not valid for the Chicago network. Simulation studies,

matching the distribution of hourly maxima over the

network with independent hourly maxima, indicate that

the 10-station networks correspond to about two inde-

pendent stations. Hence, regional spatially expressed stan-

dards would be preferable to the current formulation.

THE BARNETT-O’HAGAN SETUP

In a report written for the Royal Commission on the

Environment in the United Kingdom and subsequent-

ly published as a book, Barnett and O’Hagan (1997)

developed a framework for the statistical implemen-

tation of environmental standards. They distinguished

between ideal standards, setting limits on the true pol-

lution field, and realizable standards, set in terms of

actual measurements. Ideal standards (the United States

ozone standard is an example) are a natural approach to

standard setting in that they can be related to or even

based on the scientific evidence regarding health effects,

crop damage, etc. However, it is impossible to imple-

ment an ideal standard. In the United States ozone case,

we cannot measure the number of exceedances every-

where in the state, much less measure the expected val-

ue of this randomvariable. Thus, realizable standards are

much easier to implement (both politically and practi-

cally) because they specify exactly what measurements

constitute a violation of the standard. The downside is

that it is very difficult to relate a realizable standard to

the actual pollution field and consequent health effects.

It is natural to seek a compromise between these

two extremes. Barnett and O’Hagan (1997) suggest a

statistical implementation of an ideal standard, in their

terminology, a statistically verifiable ideal standard.

In the case of the United States ozone standard, such

a standard amounts to specifying statistical-quality pa-

rameters for deciding whether a given region is in com-

pliancewith the standard. In the testing setup, a natural

approach is to fix the type I and type II errors, the former

at a value beyond which health effects are serious, and

the latter at a value for which there is no evidence of

health effects or at a value corresponding to peak back-

ground levels. There would be a gray area in which

values are neither safe nor seriously harmful.

Another approachwould be to use a Bayesian analy-

sis, in which the statistical task is to produce a distribu-

tion of u from which one can then judge the probability

that a region is in violation of the standard. The Bayesian

approach requires specifying a prior distribution, which

could be based on historical data or on expert consensus.

NETWORK MONITORING BIAS

Each state is responsible formonitoring compliancewith

the standards in the CAA. To this effect, they operate

monitoring networks, which have to be approved by the

local EPA authorities. Because the network is primarily

aimed at finding large values of air pollution, a site that

consistently shows lower values than another is likely to

be closed down. Hence, the monitoring network setup

keeps changing over time, with sites selected based on

high values instead of a random or systematic fashion.

Figure 1. The conditional probability of the true concentra-
tion being above 0.12 ppm, given that the observed con-
centration is that shown in the x-axis. The parameter values
chosen correspond to values suitable for the South Coast
region, California. The dotted line is the value 0.12 indicated in
the United States 1-hr ozone standard.
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The consequence of using compliance monitoring

networks to study health effects can be serious. Most

health effect studies (e.g., Thomas [2000]) take the am-

bientmeasurements closest to an individual’s home and/

or workplace as a surrogate for exposure. Clearly, if the

ambient concentrationmeasurements are from data cho-

sen to findpeaks in themean spatial field, the exposure of

an individual may be overestimated, resulting in an un-

derestimation of the health effects of exposure to a given

level of pollution. This network bias is a potentially very

serious bias, particularly because the relative risk estimates

in environmental epidemiology are commonly close to 1.

Studies using personal monitors may be helpful to assess

more precisely the health effects of a given exposure.

Current technology, however, produces rather unwieldy

monitors, which are likely to affect personal behaviour.

REFERENCES CITED

Barnett, V., andA.O’Hagan, 1997, Setting environmental standards:
The statistical approach to handling uncertainty and variation:
London, Chapman & Hall, xi + 111 p.

Bickel, P. J., and K. A. Doksum, 1977, Mathematical statistics: San
Francisco, Holden-Day, 493 p.

Carbonez, A., A. H. El-Shaarawi, and J. L. Teugels, 1999, Maxi-
mummicrobiological contaminant levels, Environmetrics, v. 12,
p. 79–86.

Carroll, R. J., R. Chen, E. I. George, T. H. Li, H. J. Newton, H.
Schmiediche, and N. Wang, 1997, Trends in ozone exposure
in Harris County, Texas: Journal of the American Statistical
Association, v. 92, p. 392–415.

Cox, L. H., P. Guttorp, P. D. Sampson, D. C. Caccia, and M.-L.
Thompson, 1999, A preliminary statistical examination of the
effects of uncertainty and variability on environmental regu-
latory criteria for ozone, inNovartis Foundation Symposium220,
Environmental statistics: analysing data for environmental pol-
icy: Chichester, Wiley, p. 122–43.

O’Brien, W., B. K. Sinha, and W. P. Smith, 1991, A statistical pro-
cedure to evaluate cleanup standards: Journal of Chemometrics,
v. 5, p. 249–61.

Percival, D. E., andA. T.Walden, 1993, Spectral analysis for physical
applications: Cambridge, Cambridge University Press, xxvii +
583 p.

Symons, M. J., C.-C. Chen, and M. R. Flynn, 1993, Bayesian non-
parametrics for compliance to exposure standards: Journal of
the American Statistical Association, v. 88, p. 1237–40.

Thomas, D. C., 2000, Some contributions of statistics to environ-
mental epidemiology: Journal of the American Statistical Asso-
ciation, v. 95, p. 315–19.

Watson, W. D., and P. B. Downing, 1976, Enforcement of envi-
ronmental standards and the central limit theorem: Journal of
the American Statistical Association, v. 71, p. 567–73.

266 Setting Environmental Standards: A Statistician’s Perspective


