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Limiting risk in environmental
problems: Corporate budget
constraints and minimum
involvement
I. Lerche and E. Paleologos

ABSTRACT

For a given opportunity in which a company can invest to perform

environmental remediation for profit, the influences of value, cost,

success probability, and corporate risk tolerance provide an optimal

working interest (OWI) that should be taken to maximize the risk-

adjusted value (RAV). When several opportunities are available,

but when the total budget is insufficient to take OWI in each, an

analytical procedure is undertaken for optimizing the RAV of the

total portfolio; the relevant working interests are also derived based

on a cost-exposure constraint. Several numerical illustrations will

exhibit the use of the method under different budget conditions and

with different numbers of available opportunities. The result is that

the computations of portfolio balancing can be done quickly using

the analytical expressions presented here, thereby providing rapid

assessments of environmental opportunities and their worth.

INTRODUCTION

Environmental remediation projects are characterized by cost

overruns, uncertainties in terms of technological or fiscal perform-

ance, and the potential of high liability costs that may put at risk

a corporation’s resources and reputation (Lerche and Paleologos,

2001). Procedures for limiting corporate economic exposure are

always involved in the decision to pursue particular available op-

portunities. Decisions commonly revolve around the fractional

involvement (the working interest fraction, W ) that a particular

corporation would prefer to take in a given opportunity. When

involvement in a single project is only considered, Paleologos and

Lerche (2000) have provided a procedure that allows the calcula-

tion of the fractional involvement that would maximize corporate

profits for different contract prices and costs, probabilities of suc-

cess (or failure), and various levels of corporate tolerance to risk.
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These authors used exponential and parabolic utility

models (measures of managerial attitude toward risk)

to illustrate how decision makers can evaluate projects

of transport and burial of hazardous wastes (Paleologos

and Lerche, 1999; 2002) and assess, for a given contract

price, whether involvement in a project is desirable, what

fraction of the contract should be accepted, and how

acceptance could influence corporate profits. For many

corporations, it is not easy to assess the accuracy of such

a decision made in the absence of some corporate inter-

nal group performing an extensive risk-analysis inves-

tigation. This luxury is commonly not available to many

small and midsized environmental corporations who

must make do either with estimates based on guesswork

or on practical experience. The problem is exacerbated

when several environmental opportunities are available,

and the corporation must split its limited budget to

undertake some fraction of the projects or to become

involved with partners in all of the available opportu-

nities. A corporation commonly needs a quick proce-

dure for determining the worth of becoming involved

and the extent to which it should be involved. The

objectives of this paper are twofold: first, to provide

analytic expressions that would allow, in the face of

constrained budget, for the calculation of the working

interest of each environmental opportunity so that the

total profit returned by all projects is maximized; sec-

ond, to determine the effect of minimum required in-

volvement for each opportunity. Thus, the analytic

method and solution to the problem provided here are

such that a simple calculation based on a spreadsheet

program such as Excel can easily be constructed well

within the financial reach of almost all environmental

corporations. Additionally, the ability to provide a rapid

investigation of working interest limits for each oppor-

tunity means that one can quickly focus on the param-

eters that, for a range of possible budgets, control the

problem.

Although each opportunity presented to, or avail-

able to, a corporation can be evaluated in isolation, the

difficulty is that most corporations do not have an un-

limited budget, so that they cannot take the optimal

working interest (OWI) in each opportunity. An OWI

is that working interest returning the largest risk-

adjusted value (RAV) to the corporation. The RAV is

defined as follows. Consider a two-branch decision

situation (or lottery L) that can lead either to monetary

outcome A or monetary outcome B with equal prob-

abilities (p = 0.5). The expected value of this gamble or

the value that will be returned if one is involved in a

large number of these situations, is E = (A + B)/2. An

amount CE is termed the certainty equivalent of L (in

decision theory terminology; Raiffa, 1997), or RAV (in

oil-industry terminology; Lerche and MacKay, 1996) if

an individual is willing to exchange the rights to the

above lottery for the certain amount CE (Appendix A

provides details on the calculation of RAV for the sim-

ple case of a two-node decision tree diagram). The RAV

provides a measure of the value the corporation can ex-

pect from a project when there is corporate reluctance

to expose capital to the chance of loss and, as will be

discussed later, can be quantified in terms of a risk tol-

erance, RT, monetary amount for each project.

The reason behind the acceptance of nonoptimal

working interest in each project is related to corporate

liability. If each project were to fail with probability

p fi for the ith project, with a total cost (including not

only the cost of undertaking the remediation venture,

but also liability costs and insurance costs) of Ci, and if

OWIi were to be taken in each opportunity, then for

N such projects, the corporate liability on cost exposure

is CO ¼
PN
i¼1

CiOWIi. The amount CO is the total at

risk should the corporation have to pay all liability

costs on all the N projects with which it is involved.

Large corporations with many projects in different

phases of development and operating on a continuing,

steady, cash-flow basis commonly consider it appropri-

ate to limit corporate liability to cost expenditure, given

as CE ¼
PN
i¼1

CipfiOWIi. The amount CE measures what

a corporation should, on average, have to commit, given

some estimate of the probability of failure of each re-

mediation project. Most corporations are relatively con-

servative, however, and commonly insist that working

interests Wi be taken such that COðWÞ ¼
PN
i¼1

CiWi be

less than or equal to the available budget, B. In such

cases, as we shall demonstrate, commonly, one cannot

take the OWI in each opportunity, particularly when

the budget is small. The problem then is to find some

procedure to optimize the total RAV from the N op-

portunities while staying within the mandated corpo-

rate budget B, i.e., the portfolio of opportunities is

balanced (Lerche and Paleologos, 2000).

In addition to the limitations imposed by a finite

corporate budget, there is also commonly a limit im-

posed by potential partners in an environmental oppor-

tunity. From the partner’s side, it is commonly the case

that an offer for joint participation is made to a corpo-

ration, but with the caveat that a minimum working

interest, Wi,min, shall be undertaken in the ith project.

60 Limiting Risk in Environmental Problems



Thus, the corporation cannot arbitrarily discard those

projects that do not meet its internal criteria for involve-

ment; it must temper those criteria to allow any involve-

ment at all. It can happen that some of the projects

offered are not considered to be profitable by the corpo-

ration, but involvement in such projects is a necessary

evil to participate in the more lucrative deals offered.

In such a situation, for N projects, one has a sec-

ondary requirement in place that

XN
i¼1

WiCi �
XN
i¼1

Wi;minCi ¼ M ð1aÞ

and

1 � Wi � Wi;min; i ¼ 1; . . . N ð1bÞ

where M is cost involvement for minimum working

interest for all projects.

Thus, the corporation has to determine the best

working interest to take in each of the N projects sub-

ject to equations 1a and b and also subject to the budget

limitation of

B �
XN
i¼1

WiCi ð2Þ

For later convenience, it is best to combine equa-

tions 1a and 2 in the form

XN
i¼1

WiCi ¼ M þ ðB � MÞ sin2 q ¼ M cos2 qþ B sin2 q

ð3Þ

where u is an angle in the range 0 � u � p/2. (More

will be said later in this paper about constraints on the

angle u arising when a minimum working interest in-

volvement is required.) Equation 3 automatically en-

sures that both inequalities 1a and 2 are satisfied. Also

assumed is that B � M, or else there is no involve-

ment possible that will satisfy the corporate budget

limitations.

The primary purpose of this paper is to provide an

analytic technique for determining the portfolio balanc-

ing with a fixed total cost exposure (or cost expenditure)

limit for determined input parameter values for each

opportunity. The advantages to such an analytic tech-

nique are that one can see immediately which factors

are playing dominant roles in controlling estimates of

worth (something that is difficult to do with a complex

computer program); one can perform the relevant esti-

mates quickly on a hand calculator or a simple spread-

sheet program and also plot results; one does not need

access to a large computer to undertake the estimates;

the effect of anthropogenic bias and guesswork are re-

moved in favor of a more rational approach; and the

procedure is not dependent on having a few experts in

a corporation, who may leave or retire, but instead can

be undertaken by almost anyone, thus preserving the

knowledge base and also providing an open forum for

assessment instead of a black box approach in which

one does not know or cannot find out very easily what

a particular procedure does to evaluate risk of involve-

ment. For all these reasons, it is appropriate to describe

how one does such assessments of risk for environ-

mental projects in a simple manner.

PORTFOLIO BALANCING WITH STATISTICALLY
SHARP PARAMETERS

Consider a sequence of opportunities, i = 1, 2, . . . , N,

in which RAVs (i, Wi) have been computed for each

opportunity as a function of working interest, Wi for a

corporate risk tolerance, RT (Appendix A). Para-

meters related to the value, costs, and success chance

of each environmental opportunity are also shown in

Figure 1 for ease of presentation of the remainder of

the argument given here. The optimum working inter-

est, OWI(i), for each opportunity is calculated so that

the maximum RAV, RAVmax(i, OWI), is also known. In

making these estimates, it is taken that value Vi, costs

Ci, success probability p si, and risk tolerance RT are

all statistically sharp (precisely known). The expected

worth of an opportunity is then Ei = p siV i � p fiC i

(with p fi = 1 � p si), whereas the standard error, si, of

the expected worth is si = j(Vi + Ci)j (p sip fi)
1/2 so that

the volatility, vi, of the expected worth is vi = si/jEij
(see Appendix A).

Relative Importance

The relative importance, RIi, of the ith opportunity in

relation to all other opportunities can be defined

either as

RIiðWiÞ ¼ RAVði;WiÞ=
XN
j¼1

RAVð j;WjÞ;

ðunweightedÞ ð4aÞ
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or, if weighted inversely with respect to volatility for

each project, as

RIiðWiÞ ¼ ðRAVði;WiÞ=niÞ=
XN
j¼1

ðRAVðj;WjÞ=njÞ;

ðweightedÞ ð4bÞ

Here, RAV(i, W ) is positive or zero only. In either

situation, the relative importance of each opportunity

is available.

Profitability

The contribution of each opportunity to the total es-

timated profitability, P, is then commonly defined

through

Pi ¼ RAVði;WiÞ ðunweightedÞ ð5aÞ

or

Pi ¼ ðRAVði;WiÞ=nlÞ=
XN
j¼1

1=nj; ðweightedÞ ð5bÞ

with the total estimated profit, P, then being given by

P ¼
XN
j¼1

Pj ð5cÞ

Costs

Maximum costs of each opportunity, for a fractional

working interest Wi, are CiWi and have to be borne by

the corporation. If the opportunity does not succeed,

then no future revenues are ever available against which

to replenish corporate resources, so a net cost of CiWi

is the fiscal drain against the corporation. If the oppor-

tunity succeeds, then future revenues allow later re-

plenishment of the corporate outlay. However, at the

time of committing to the project, the corporation

only has a budget B to use with the estimated costs that

it knows it must bear. Two limiting cases are available:

1. Cost exposure, defined as total costs

COðWÞ ¼
XN
i¼1

CiWi ð6aÞ

measures the authorization for expenditure and par-

ticipation in each and every opportunity.

2. Cost expenditure, defined as total probable costs

CE ¼
XN
i¼1

Ci Wipfi ð6bÞ

measures the likely amount of cost that one would

have to bear on a long-term continuing cash-flow

basis once the failure probability of each opportunity

is allowed for. Computations will be carried through

here on a cost-exposure basis.

BUDGET CONSTRAINTS

A total budget B is available. The problem is to figure

out what fraction of the budget should go to each op-

portunity to maximize the total portfolio of profit-

ability from each. Two cases are analyzed here.

High Budget

Suppose first that the budget is sufficiently high that

participation in each opportunity could be at the OWIi

for each opportunity; each project is then maximized

Figure 1. Sketch of a decision tree
diagram with notations of value V,
costs C, and success and failure prob-
abilities (p s and p f = 1 � p s).
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in terms of its RAV. The total cost exposure is

C0ðmaxÞ ¼
XN
i¼1

CiOWIi ð7aÞ

so the budget should be at

B � C0ðmaxÞ ð7bÞ

The development of RAVs have depended, to a

large extent, on exponential utility models of the form

U(x) = 1 �exp(�x/RT) to represent risk-averse prefer-

ences (Krzysztofowicz, 1986; Keeney and Raiffa, 1993;

Lerche and Paleologos, 2001). A utility function, U,

is a way to standardize monetary outcomes and con-

sequences of a decision that are not measurable in

monetary terms in the same units, and it encodes the

strength of an individual’s preferences for specific out-

comes and risk attitudes toward the uncertainty of such

outcomes. As the dollar amount x becomes large, U(x)

tends to 1, U(0) equals 0, and for negative x (losses),

the exponential utility function becomes negative. RT

is denoted as risk tolerance, and it determines how risk

averse a utility function is. Appendix A provides a

physical analog of the exponential utility function for a

simple two-branch decision-making situation. Based

on the exponential model (also denoted here as the

Cozzolino (1977a, b) formula) the RAV is given by

RAV¼�RT lnfps expð�WV=RTÞ þ pf expðWC=RTÞg
ð8aÞ

Not all corporations model risk attitudes with a

risk aversion which is exponentially weighted; alterna-

tive formulae for risk aversion are as many and as varied

as the individual corporations involved. The parabolic

approximation for RAV is more risk averse at high

working interest values than the exponential formula

8a, but is almost identical at low working interests.

This property of the parabolic RAV formula parallels

decisions in the oil industry, in which managers are

commonly willing to accept an opportunity to about

50% involvement, even when the risk tolerance is high,

but are less eager to accept smaller working interests.

The idea behind a parabolic rule is that there is greater

stability in the management of high-loss scenarios than

there is with the exponential rule. Here, the parabolic

rule is investigated corresponding to a risk-aversion

factor that can be determined simply by expanding the

Cozzolino risk-aversion formula above to quadratic or-

der in the working interest W. In this case, the equiv-

alent to the Cozzolino formula (equation 8a) is the

RAV, given through

RAVðWÞ ¼ WE½1 � 1

2
n2WðE=RTÞ ð8bÞ

which is equivalent to Cozzolino’s formula, but for

parabolic weighting of risk aversion instead of expo-

nential. A full proof of the development of equation 8b

from expression 8a is provided in Paleologos and Lerche

(2000) (Appendix B). Equation 8b can be expressed in

a standard parabolic form as

RAVðWÞ ¼ aW2 þ bW ;

a ¼ �n2E2=ð2RTÞ; b ¼ E ð8cÞ

Low Budget

If the total budget, B, is less than total cost exposure,

C0(max), then OWI cannot be taken in each oppor-

tunity. One has to settle for less than optimal profit-

ability. The question is to figure out a procedure for

balancing the portfolio of opportunities so as to maxi-

mize profitability, recognizing that the profitability

will be less than optimal. It is this question that is now

addressed subject to the constraints of equation 1b for

greater than minimum required working interest, and

equation 3 for corporate budget limitations.

FINDING THE BEST WORKING INTERESTS
UNDER CONSTRAINED CONDITIONS
FOR INVESTMENT

To show how the procedure works at maximizing

portfolio balancing, in the next section of this paper,

several numerical illustrations of increasing complexity

are considered. For the exponential RAV (equation 8a),

the maximum value of RAV with respect to working

interest, W, is given by

OWI ¼ RT

ðC þ VÞ ln
psV

pfC

� �
> 0 if E1 > 0 ð9aÞ

and at this value of OWI, the maximum value of RAV is

RAVmax ¼ VOWI � RT ln½ psð1 þ V=CÞ ð9bÞ

Equations 9a and 9b are derived by setting the

derivative of expression 8a equal to zero, solving the
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resulting equation to obtain the OWI, and then sub-

stituting this OWI into equation 8a.

From the properties of parabolic functions (see any

standard text on mathematical analysis), using equation

8c, one obtains Wmax (for E > 0) as

OWI ¼ Wmax ¼ �b=2a ¼ RT=ðE n2Þ ð10aÞ

and on W = Wmax, the maximum RAV is attained at

RAVmax ¼ �b2=4a ¼ RT=ð2n2Þ ð10bÞ

In this paper, the unweighted procedure will be

used, together with the parabolic RAV formula for il-

lustrative purposes only, because analytically exact ex-

pressions can be written down for the working interests

and the total RAV.

For each opportunity i = 1, . . . , N, there is some

best Wi. The task is to obtain an explicit formula de-

scribing Wi. The procedure for so doing is as follows.

The total RAV of the N projects is

RAV ¼
XN
i¼1

RAViðWiÞ ð11Þ

where Wi � 0 and Wi � Wmax,i. It is also taken that the

total budget is constrained, and for a parabolic risk-

aversion formula, substitution of equation 10b into

equation 7a yields

B < C0ðmaxÞ ¼ RT
XN
i¼1

ðCi=ðn2
i EiÞÞ ð12Þ

so that optimum working interest in each and every

opportunity cannot be taken.

There are N values, W1, . . . , WN, to obtain from

equation 11. If no constraints were in place, then each

Wi would be at its optimum of OWIi. However, equa-

tion 3 poses the constraint of

b ¼
XN
k¼1

CkWk ð13Þ

where b = M + (B � M )sin2u (equation 3), together

with the constraint that each W shall be less than unity

and greater than the required involvement minimum.

Equation 13 can be used to write the jth opportunity

working interest as

Wj ¼ C�1
j b �

XN
k¼1
k6¼j

CkWk

8>><
>>:

9>>=
>>; ð14Þ

where, in the summation, the term k = j is to be

omitted. Then, rewrite equation 11 as

RAV ¼
XN
m¼1
m 6¼i; j

RAVmðWmÞ þ RAViðWiÞ

þ RAVj C�1
j ðb �

XN
k¼1
k 6¼j

CkWkÞ

8>><
>>:

9>>=
>>; ð15Þ

where, in the first summation, the terms m = i and m = j
are to be omitted, and in the second summation, the

term k = j is to be omitted.

Inspection of equation 15 shows that only the two

end terms involve Wi. Then, the maximum of RAV

with respect to Wi occurs when

C�1
i

@RAViðWiÞ
@Wi

¼ C�1
j

@RAVjðxÞ
@x

ð16Þ

where x ¼ C�1
j ðb �

PN
k¼1
k6¼j

CkWkÞ. For the parabolic RAV

formula, one has from equation 8b

@RAViðWiÞ=@Wi ¼ Ei½1 � ni
2WiðEi=RTÞ ð17Þ

Hence, equation 16 becomes

EiC
�1
i ð1 � Win

2
i Ei=RTÞ ¼ EjC

�1
j

� 1 � ðn2
j Ej=RTÞC�1

j ðb �
XN
k¼1
k 6¼j

CkWkÞ

2
664

3
775 ð18aÞ

i.e.,

EiC
�1
i ð1 � Win

2
i Ei=RTÞ ¼ EjC

�1
j ð1 � Wjn

2
j Ej=RTÞ

ð18bÞ

However, i and j are arbitrary choices; hence, each side

of equation 18b must equal a constant H, independent

of i or j. Solving equation 18b for Wi yields

Wi ¼ RTð1 � CiHE�1
i Þ=ðn2

i EiÞ; i ¼ 1; . . . ; N ð19Þ
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Then, substituting equation 19 into equation 13 and

solving for the constant H yields

H ¼
XN
j¼1

Cj

n2
j Ej

� b=RT

" #
=
XN
j¼1

C2
j

n2
j E2

j

" #
ð20Þ

Substituting the above expression for H in equation 19

allows rewriting equation 19 for Wi as a function of

the financial and statistical parameters of the projects

only

Wi ¼RTðEin
2
i Þ

�1 1�ðCi=EiÞ
XN
j¼1

ðCj=ðn2
j EjÞÞ � b=RT

" #(

=
XN
j¼1

ðC2
j =ðn2

j E2
j ÞÞ
)

ð21Þ

provided Wi,min � Wi � min{2OWIi, 1} and under the

low budget constraint. Inspection of equation 21 shows

that the budget constraint, equation 3, is just the re-

quirement that

XN
j¼1

ðCj=n
2
j EjÞ > b=RT ð22Þ

and, when this inequality is in force, then each Wi �
OWIi.

Substituting equation 21 for Wi into the require-

ment that Wi � Wi,min and rearranging terms, one

obtains the inequality

b=RT � ai �
XN
j¼1

ðCj=ðn2
j EjÞÞ �

XN
j¼1

C2
j =ðn2

j E2
j Þ

 !

� ðEi=CiÞ ð1 � Wi;minEin
2
i =RTÞ ð23Þ

Now remember that b = Mcos2 u+ Bsin2 u (equation 3),

and that M is the sum of Wi,minCi (equation 1a) over

all the i opportunities. Hence, by rearrangement, one

can sum equation 23 over all projects and so provide

the global constraint on the angle u that

1 � sin2 q � að1 � 1=dÞRT

ðB � MÞ ð24aÞ

where

a ¼
XN
i¼1

Ci=ðn2
i EiÞ; and d ¼

XN
i¼1

ðCi=niEiÞ2 ð24bÞ

The outer inequalities of equation 24a then set a

limit on the sum of the minimum working interests to

make the projects at all palatable to the corporation.

One has

B � að1 � 1=dÞRT � M ð25Þ

If inequality 25 cannot be satisfied, then there is no

way that the sum of all projects can be at all profitable

with the minimum working interest constraint in place.

Hence, order the summations with respect to ai (de-

fined through equation 23) with a1 < a2 < a3 . . . < aN.

Then, as the budget, B, is systematically decreased,

WN = WN,min when B = RTaN, and the Nth op-

portunity is removed from consideration. As B sys-

tematically decreases, in turn, WN�1, WN�2 etc. reach

their minimum values, and those opportunities are dis-

carded. Thus, at any given budget, it is relatively simple

to determine which opportunities should be invested

in and also the working interest that should be taken.

The analytical exact formula for determining Wi,

as given through equation 21, then maximizes the total

RAV of all the N opportunities under the fixed budget

constraint. Thus, as the budget decreases from the max-

imum of Bmax ¼
PN
i¼1

CiOWIi (at which OWI can be

taken in each and every opportunity) to B = 0, the

various opportunities are steadily discarded in order of

their values of a. The general argument, although ex-

plicitly developed here for unweighted RAV formulae,

is also appropriate if any weighting is done. The logic

proceeds as above mutatis mutandis (see Appendix B).

NUMERICAL ILLUSTRATIONS

Optimization with Zero Working Interest Minimum

Consider three opportunities A, B and C with the fol-

lowing characteristic parameters:

Opportunity A: V = $110 million; p s = 0.5 = p f; C
C = $10 million; RT = $30 million.
Opportunity B: V = $200 million; p s = 0.5; p f =

0.5; C = $100 million; RT = $30 million.
Opportunity C: V = $300 million; p s = 0.4; p f =

0.6; C = $120 million; RT = $30 million.

Opportunities A and B each have a mean value of

E = $50 million, whereas opportunity C has E = $48

Lerche and Paleologos 65



million. Using the parabolic formula, opportunity A has

RAV(A)max = $10.417 million at an OWI(A) = 0.417,

whereas opportunity B has RAV(B)max = $1.667

million at OWI(B) = 0.067, whereas opportunity C

has RAV(C)max = $0.816 million at OWI(C) = 0.034,

for a total possible maximum RAV of $12.9 million.

Note that the working interest minimum is greater

than the OWI for projects B and C. Then, one has to

ask whether project A will provide sufficient return on

its own that its potential gains will more than offset

potential losses from projects B and C. Accordingly, it

is a good strategy to carry through the analysis at first,

as though the minimum working interest offered is

zero. This way, one can see where a particular offer

would lie relative to the available budget, risk toler-

ance, and intrinsic worth of each available project.

Optimization of the total RAV at different bud-

gets has been carried out under two conditions: (i)

using the analytic formula for parabolic RAV given in

the preceding section and (ii) comparing the results

obtained from the analytic formula with those arising

from a Simplex solution solver (Hillier and Lieberman,

1980), which has been the standard tool for optimi-

zation operations in the oil industry. Both procedures

yielded identical results under all conditions addressed,

but the analytic method is much faster numerically

than the Simplex search method.

A Budget of $20 Million

The value of C � OWI is $4.16 million for oppor-

tunity A, $6.667 million for opportunity B, and $4.082

million for opportunity C, for a total cost of CiOWIi =

$14.915 million. Thus, the budget of $20 million ex-

ceeds the total costs at the optimum working interest

for each opportunity, so that OWI is taken in each at a

cost of $14.915 million; a budget return of $5.085

million to the corporate coffers is then made.

A Budget of $11 Million

In this case, the budget is less than the total needed to

invest in each opportunity at its OWI, but is large

enough so that no single opportunity should be dis-

counted. Both the parabolic analytic formula and the

Simplex method return the optimum values of

W(A) = 0.4033 RAV(A) = $10.406 million C(A)W(A) = $4.0328 million

W(B) = 0.0452 RAV(B) = $1.4946 million C(B)W(B) = $4.5248 million

W(C) = 0.0204 RAV(C) = $0.6847 million C(C)W(C) = $2.4424 million

for a total RAV of $12.585 million. In this case, note

that the optimization of total RAV has kept the

working interest in opportunity A very close to its

OWI and has kept the involvement in opportunity B at

about 3/4 of the OWI, but has dropped the involve-

ment in opportunity C to about 2/3 of its OWI, in line

with E/C being smallest for opportunity C, so that the

lower budget is forcing the working interest in oppor-

tunity C closer to zero first.

A Budget of $4 Million

In this case, the threshold value of E/C = 0.3 has been

crossed for opportunity C, which is therefore dis-

counted completely. The budget is then split between

opportunities A and B in the proportions

W(A) = 0.3765 RAV(A) = $10.3 million C(A)W(A) = $3.7647 million

W(B) = 0.0024 RAV(B) = $0.115 million C(B)W(B) = $0.2353 million

for a total RAV of $10.415 million. In this case, be-

cause opportunity B has a lower E/C (= 0.5) than op-

portunity A (= 5), the lower budget forces less in-

volvement in opportunity B. The total maximum RAV

for both opportunities is $12.9 million, so that portfolio

balancing yields 97.6% (at B = $11 million) and 80.9%

(at B = $4 million) of the maximum by optimizing the

budget fractions allocated to each opportunity.

Optimization with a Finite Working Interest Minimum

Although the above illustration indicates the best allo-

cation of funds that a corporation could make between

the three projects under different budgets, it does not

include the limitation imposed by the requirement of

minimum working interest involvement.

Suppose then that all parameters for each of the

above projects are kept as above, with the sole excep-

tion of a required minimum working interest of 5%.

Thus, if the corporation wishes to become involved in

the more lucrative opportunity A at greater than 5%,

then the corporation must also take at least a 5% min-

imum interest in the less lucrative opportunities B and

C. Because the optimum working interest for oppor-

tunity C is only 3.4%, it follows that a minimum 5%

requirement will lower the RAV for opportunity C

from its maximum possible. At 5% working interest,

the cash involvement in opportunity C is then $6 mil-

lion, which is well in excess of the $4.082 million that

would have been committed at the optimum working

interest. Thus, for a budget of $17 million, there would

then be only $11 million remaining to be spent on op-

portunities A and B. If one was to ignore the minimum

working interest requirement again for the moment,
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then a residual budget of $11 million split between

opportunities A and B means that one would take only

4.25% of opportunity B as shown in subcase c of the

previous section. However, such a low fractional in-

terest is not permitted, and one must take at least 5%.

Hence, from the residual budget of $11 million, one

must spend at least $5 million on opportunity B, leav-

ing a residual budget of $6 million that can be spent on

opportunity A. Now, the optimum working interest

for opportunity A is 41.7%, and the total project cost is

estimated at $10 million, so that a maximum of $4.17

million should be committed to opportunity A, leav-

ing a residual budget of $1.83 million uncommitted.

The result is that for the budget of $17 million, one is

forced to take a minimum position of 5% in projects B

and C, whereas an optimal position of 41.7% can still

be taken in opportunity A.

The simple example given here indicates sharply

how the extra requirement of a minimum position in

each opportunity alters the distribution of budget be-

tween the three projects. The result is not the optimal

choice that the corporation would like to make in the

sense of returning the largest potential RAV to the

corporation from all three projects, but it is the best

that can be achieved with the minimum working in-

terest requirement in force. Other budget values can

be worked through in similar vein, so that a simple

spreadsheet calculation will quickly generate an eval-

uation of all projects under any constraint for each

project.

CONCLUSIONS

This paper has served two purposes: first was the need

to obtain analytic expressions for optimizing total RAV

for a portfolio of environmental opportunities in the

face of a constrained budget; second was the need to

determine the effect of minimum required involve-

ment for each opportunity.

In respect of the first purpose, for a parabolic pro-

file of RAV versus working interest for each opportu-

nity, it was shown that a closed form expression could

be written down exactly for the working interest that

should be taken in each opportunity to maximize the

total RAV under a constrained budget condition. The

procedure developed operates with any functional form

chosen for RAV versus working interest. Numerical

illustrations of the procedure indicated the pragmatic

operation of the method (which is extremely fast nu-

merically compared to the more conventional Simplex

solution solver methods that have been used to date).

In respect of the second purpose, the ability to

provide a rapid investigation of working interest limits

for each opportunity means that one can quickly focus

on which parameters need to be addressed if one is to

narrow the contribution to the total RAV for a given

budget or, indeed, for a range of possible budgets.

The methods presented here can be used with any

functional form of RAV dependence on working inter-

est to provide simple expressions for the working in-

terest to be taken to optimize a portfolio of oppor-

tunities. It is this fact that the numerical illustrations

have been designed to exhibit.

APPENDIX A

Cozzolino (1977a,b; 1978) constructed his RAV formula based on
utility theory applied to a chance node decision tree diagram, such as
that given in Figure 1. The notation of Figure 1 is as follows: V = value
(positive); p s = probability of success; C = cost of failure (positive);
p f = probability of the project not succeeding ( p f = 1 � p s). At the
chance node point of Figure 1, the expected value or weighted
average of the two possible outcomes of the project is

E1 ¼ psV � pfC ðA1Þ

which is positive, provided that p sV > p fC. The second moment of
the project value is E2 = p sV

2 + p fC
2, so that a measure of the

uncertainty in the outcome is provided by the variance

s2 ¼ E2 � E1
2 ¼ pspfðV þ CÞ2 ðA2Þ

A measure of risk is commonly assigned by the volatility, n,
defined by

n ¼ s=E1 ¼ ðV þ CÞðpspfÞ1=2=ðpsV � pfCÞ ðA3Þ

which evaluates the stability of the estimated mean value, E1, relative
to the fluctuations about the mean. A small volatility (n < < 1)
implies that there is little uncertainty in the expected value, whereas
a large volatility (n > > 1) implies a considerable uncertainty in the
expected value.

Although the expected value, E1, of a project may be high, and
the volatility small, nevertheless, it can be the case that if failure does
occur, then the total project costs, C, may be so large as to bankrupt
or cause serious financial damage to the corporation. Under such
conditions, it makes corporate sense to take less than 100% working
interest in the project. A smaller fraction of the project will cut
potential gains, but will also cut catastrophic potential losses. Thus,
with a working interest fraction, W, the expected value to the
corporation at the chance node is

E1ðWÞ ¼ psðWVÞ � pfðWCÞ ðA4Þ

on the assumption that fractional working interest does not change
the probabilities of success or failure of the project. The effective
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corporate value is reduced from V to WV, whereas the potential
losses are reduced from C to WC.

Cozzolino’s (1977a,b; 1978) determination of RAV in relation
to the risk tolerance (= risk threshold), RT, of a corporation can be
given simply using an analogy from geochemistry. Imagine two energy
states that exist with activation energies E1 = WV and E2 = �WC. At
a given temperature, T, the rate at which a compound can be lost by
decay to the state E1 is given by the Arrhenius formula

ps expð�E1=RTÞ ðA5aÞ

where R is the gas constant, and p s is the probability of the reaction
pathway, being along the path determined by energy state E 1. Decay
along the path of E2 is then proportional to

pf expð�E2=RTÞ ðA5bÞ

and because only two paths exist, p s + p f = 1. Thus, the total decay
is then proportional to

ps expð�E1=RTÞ þ pf expð�E2=RTÞ ðA5cÞ

If one were to represent the total decay of equation A5c by an
equivalent activation energy, RAV, through a single equivalent
pathway, then based on the Arrhenius formula, one obtains

expð�RAV=RTÞ ¼ ps expð�E1=RTÞ þ pf expð�E2=RTÞ ðA6Þ

Hence,

RAV ¼ �RT ln fps expð�WV=RTÞ þ pf expðWC=RTÞg ðA7Þ

The intrinsic assumption here is that the activation energy rates
of conversion are controlled by the exponential Arrhenius formula.
With RT understood as risk tolerance, equation A7 is Cozzolino’s
formula relating estimated RAV to risk tolerance, RT, working
interest, W, and the value, V, cost, C, and probabilities of success/
failure, with p s + p f = 1.

Maximum Working Interest

Note that for a given value of RT, equation A7 has a maximum
value of RAV with respect to working interest, W, when W takes on
the value

Wmax ¼ RT

C þ V
ln

psV

pfC

� �
> 0 if E1 > 0 ðA8Þ

and at this value of Wmax, the maximum value of RAV is

RAVðmaxÞ ¼ �RT ln ps
pf C

psV

� �V=ðVþCÞ
þ pf

psV

pfC

� �C=ðVþCÞ
( )

¼ V Wmax � RT ln½psð1 þ V=CÞ ðA9Þ

Note that the requirement 0 � W � 1 (no less than 0% or more
than 100% working interest can be taken in a project) then implies,
from equation A8, that

psC < psV < pfC expððC þ VÞ=RTÞ ðA10Þ

If inequality A10 is not satisfied, then RAV does not have a
maximum in the range 0 � W � 1, so that RAV is then either

monotonically increasing or decreasing as W increases from zero to
unity.

As W tends to zero, then, from equation A7, one has RAV(W =
0) = 0 and

dRAV

dW

����
W¼0

¼ psV � pfC > 0 ðA11Þ

Thus, RAV is positive, increasing at small W provided p sV >
p fC, i.e., the expected value at the chance node of Figure 1 is
positive. In such a case, because there is no maximum in the range
requirement 0 � W � 1, the largest positive value of RAV occurs at
the maximum W = 1, indicating that 100% interest in the project
should be taken. Equally, if p sV < p fC, then RAV is negative,
decreasing throughout 0 � W � 1, indicating that the project should
not be invested in at all. When inequality A10 is satisfied, then there
is a range of values of W around Wmax where RAV can be positive,
so that some positive risk-adjusted return is likely even if a working
interest is taken other than that which maximizes the RAV.

Apparent Risk Tolerance

By rearrangement, equation A8 can be used in a different manner in
the form

RT ¼ WmaxðC þ VÞ= lnðpsV=pfCÞ ðA12Þ

If an arbitrary working interest value, W, is used in equation
A12 to replace the optimum value Wmax, the apparent risk tolerance,
RTA, is then given by the left side of equation A12. This apparent risk
tolerance expresses the ability to see to what extent a corporate
mandate of risk tolerance has over-risked or under-risked a particular
project, or the extent to which a particular working interest choice
permits the apparent risk tolerance to be in reasonable accord with
the corporate-mandated value. It is particularly useful in determining
what the corporate attitude toward risk tolerance is based on prior
working interest decisions.

Break-Even Working Interest

The break-even value of RAV is conventionally set to zero, which,
for the Cozzolino formula A7, occurs at a working interest W o,
determined from

pf expðWoðC þ VÞ=RTÞ þ ps � expðWoV=RTÞ ¼ 0 ðA13aÞ

provided 0 � Wo � 1.
For V > > C, equation A13a has the approximate solution

Wo ¼ 2RT V�1 ln f1 þ ð3CpfÞ=Vpsg ðA13bÞ

so that Wo < 1 in RT � 0.5V[ln{1 + (3Cpf/Vp s)}]
-1.

Maximum Risk Tolerance

Occasionally, a corporation requests that a particular fixed working
interest be taken. The question then is how does the RAV relate to
the risk tolerance. In this situation, RAV has a maximum,
RAV(max), with respect to RT at a value of RTm given through

RTm ¼ Wð�psV expð�WV=RTmÞ þ pfC expðWC=RTmÞÞ
ln fps expð�WV=RTmÞ þ pf expðWC=RTmÞg ðA14Þ
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with

RAVðmaxÞ ¼ W ½ psV expð�WV=RTmÞ � pfC expðWC=RTmÞ

ðA15Þ

The nonlinearity of equation A14 with respect to RTm

precludes an analytic expression being available, expressing RTm in
terms of W, V, C, p s, and p f, but simple values for RAV versus RT
(for fixed values of the remaining parameters) programmed in a
simple spreadsheet program can be used to estimate quickly whether
the risk tolerance for a required working interest is less than the
corporation limit.

APPENDIX B: WEIGHTED RAV OPTIMIZATION

In the body of the paper, the total RAV was maximized with
each opportunity having its RAV added arithmetically to the total.
However, corporations commonly weigh the relative RAV con-
tributions. The purpose of this appendix is to show that the
optimization of the portfolio can be carried through equally with
weighting factors.

Thus, if the weights assigned are si > 0 (i = 1, . . . N ) for
RAVi(W i), then the total weighted RAV is

RAV ¼
XN
i¼1

siRAViðWiÞ=
XN
j¼1

sj ðB1Þ

The budget constraint could also be weighted if done more on a
cash-flow basis instead of a fixed budget basis. Let that weighting be
ri > 0 (i = 1, . . . , N ) in the sense that the constraint to be applied is

XN
i¼1

CiriWi ¼ b
ðB2Þ

Then, following the procedure of the main body of the text
(see equation 16), the optimum RAV occurs when

si

riCi

@RAViðWiÞ
@Wi

¼ H ¼ constant; all i ðB3Þ

For the parabolic formula 8b using equation 10a, for OWI, one
has

@RAViðWiÞ
@Wi

¼ Ei½1 � Wi=OWIi ðB4Þ

Substituting equation B4 into equation B3 yields

Wi ¼ OWIi 1 � riCi

siEi
H

� �
ðB5Þ

Substituting equation B5 into equation B2 gives

XN
i¼1

CiriOWIi � H
XN
i¼1

C2
i r

2
i

siEi
OWIi ¼ b ðB6Þ

which determines H in terms of the budget B and the minimum
working interest requirement M of the text. A similar analysis can be
carried through for any weighting applied to any functional form
chosen for the dependence of RAV on working interest.

REFERENCES CITED

Cozzolino, J. M., 1977a, A simplified utility framework for the
analysis of financial risk, in Economics and Evaluation
Symposium of the Society of Petroleum Engineers, Dallas,
Texas, February 21, 1977: Society of Petroleum Engineers
no. 6359, 161 p.

Cozzolino, J. M., 1977b, Management of oil and gas exploration
risk: West Berlin, New Jersey, Cozzolino Associates, 155 p.

Cozzolino, J. M., 1978, A new method for measurement and
control of exploration risk, in Society of Petroleum Engineers
of the American Institute of Mining, Metallurgical and
Petroleum Engineers, March 1978, Society of Petroleum
Engineers no. 6632, p. 72–81.

Hillier, F. S., and G. J. Lieberman, 1980, Introduction to operations
research, 3d ed.: Oakland, Holden-Day, 829 p.

Keeney, R. L., and H. Raiffa, 1993, Decisions with multiple
objectives: Preferences and value trade-offs: Cambridge, Cam-
bridge University Press, 569 p.

Krzysztofowicz, R., 1986, Expected utility, benefit, and loss criteria
for seasonal water supply planning: Water Resources Research,
v. 22, p. 303–312.

Lerche, I., and J. A. MacKay, 1996, Portfolio balancing and risk
adjusted values under constrained budget conditions: Energy
Exploration Exploitation, v. 14, p. 197–225.

Lerche, I., and E. K. Paleologos, 2000, Optimal involvement in
multiple environmental projects under budgetary constraints:
Journal Stochastic Environmental Research & Risk Assess-
ment, v. 14, p. 371–383.

Lerche, I., and E. K. Paleologos, 2001, Environmental risk analysis:
New York, McGraw-Hill, 437 p.

Paleologos, E. K., and I. Lerche, 1999, Multiple decision-making
criteria in the transport and burial of hazardous and radioactive
wastes: Journal Stochastic Environmental Research & Risk
Assessment, v. 13, p. 381–395.

Paleologos, E. K., and I. Lerche, 2000, Working interest optimiza-
tion in the transport and burial of hazardous wastes: Journal
Environmental Geosciences, v. 7, no. 2, p. 106–114.

Paleologos, E. K., and I. Lerche, 2002, Option coverage techniques
for environmental projects: Journal Management in Engineer-
ing, American Association of Civil Engineers, v. 18, p. 3–6.

Raiffa, H., 1997, Decision analysis: Introductory lectures on choices
under uncertainty: New York, McGraw-Hill, 307 p.

Lerche and Paleologos 69


