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oowe M GlaNts

m Red giants with spectral type M
m Lower surface temperature (< 4000K)

m Extremely bright with typical luminosities of
103 LO

m M giants provide a way for researchers to
explore the substructures of the halo of the
Milky Way
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Red giants map how the Milky Way grew

Measuring the mass of 70,000 aging stars reveals older center, younger outskirts

Age (billions of years)
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AGE MAP The ages of tens of thousands of red giant stars are charted atop a map of the Milky Way. The oldest stars are in
red, near the galactic center. The youngest stars are blue.
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e QUEIINE

m Data
m XGBoost
m Results
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m LAMOST DR4 data

m LAMOST is a new type of wide-field telescopes
with a large aperture and a large field of view

m Currently, LAMOST DR4 has released 7.68
million spectra

m We used 6,311 M giant spectra and 5,883 M
dwarf spectra, with labels

m We randomly selected about 70% as the
training data
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orunns X@GBOOST

m Extreme Gradient Boosting

m A scalable machine learning system for tree
boosting

m An open source package

m Widely recognized in many machine learning
and data mining challenges (e.g., Kaggle)

m Use slides from “Introduction to Boosted
Trees” by Tiangi Chen
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FORTWAYN Regression Tree (CART)

m Decision rules same as in decision tree

m Contains one score in each leaf value
Like the computer game X

Input: age, gender, occupation, ...

7T *2 -
rediction score in each leaf
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rorrwanse T rade-off

0bj(©) = L(©) + (O)

/ —
Training Loss measures how Regularization, measures
well model fit on training data complexity of model

m Why do we want to contain two components in the
objective?
m Optimizing training loss encourages predictive models

Fitting well in training data at least get you close to training
data which is hopefully close to the underlying distribution

m Optimizing regularization encourages simple models

Simpler models tends to have smaller variance in future

predictions, making prediction stable
14
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FORT WAV Deep Learning

m Shallow learning algorithms learn the
parameters of a model directly from the
features of training samples and build a
structurally understandable model

m We focus on shallow learning to identify
most important features to separate M
giants from M dwarfs
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Purnue Performance Comparison of
rorrwane. Fo - Machine Learning Methods

Algorithm Accuracy Precision Recall
XGBoost 99.79 96.87 98.93
SVM 99.53 92.08 98.94
Random forests 99.29 90.05 96.23
ELM 08.75 80.71 97.85
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wewne IMportant Features

m We found that 287 features among 3,951
pixels of input data are used in XGBoost

m [he more times a feature is used In
XGBoost tree, the more important it is

IPS — Ntim.e_‘fs/SUA[t-imes
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wewne IMportant Features
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- Gonclusions

m XGBoost is used to discern M giants from M
dwarfs for spectroscopic surveys

m [he important feature bands for distinguishing
between M giants and M dwarfs are accurately
identified by the XGBoost method

m We think that our XGBoost classifier will
perform effectively for other spectral surveys as
well if the corresponding features wavelength
bands are covered
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