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Overview of my research

• Statistics for climate studies

- Paleoclimate reconstruction

- Characterization of spatiotemporal pattern of climate fields

• Environmental health

- HIV diagnosis prediction

- West Nile Virus infection and environmental variables

• Theory and methodology in spatial statistics

- Model teleconnection between climate variables

- Nonparametric models for spatial and spatio-temporal random fields

- Nonstationary models for spatio-temporal random processes

- Comparing two spatio-temporal random fields
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Why care about the PAST climate?

• Accurate and precise reconstructions of past climate help to

characterize natural climate variability on longer time scales.

• Spatially wide-spread instrumental temperature observations extend

back to only about 1850.

• Validate climate models - Atmosphere/Ocean General Circulation

Model (AOGCM)
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How to recover past climate?

• Earth’s climate history written in ice, wood and stone.

• Reconstruct the past temperature from indirect observations

(proxies) such as

• Tree-ring width and densities

• Pollen

• Borehole

• Speleothems (cave deposits)

• Coral records, etc.

• Radiative Forcings: Solar, Volcanic eruption and

Greenhouse gases.
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Tree-ring and Pollen

Climate indicators: Tree ring width and density; Pollen assemblage
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Data - Borehole

Footprint of temperature revolution: Borehole depth profile
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Forcings
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a: Volcanism (contains substantial noise)

b: Solar irradiance

c: Green house gases
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How to integrate different data sources

Skill of each proxy and forcings

• Tree ring (Dendrochronology): annual to decadal

• Pollen: bi-decadal to semi-centennial

• Borehole: centennial and onward

• Forcings: external drivers

Goal: Reconstruct the 850-1849 temperature by all proxies, forcings and

the 1850-1999 temperature

Bayesian Hierarchical Model (BHM) to integrate all proxies, forcings and

temperatures and get inference of past temperatures
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Bayesian Hierarchical Model (BHM)

Distribution rule:

[P,T ,θ] = [P|T ,θ][T |θ][θ]

Three hierarchies:

• Data Stage: [Proxies|Temperature, Parameters]

Likelihood of Proxies given temperatures

• Process Stage: [Temperature|Parameters]

Physical model of temperature process

• Parameter Stage: [Parameters]

Specify the prior of parameters
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BHM

• D, P and B: tree-ring (Dendrochronology), Pollen and Borehole.

• MD , MP and MB : transformation matrices in forward models to

relate temperature to proxies.

• T1: Unknown temperatures requiring reconstruction

• T2: the observed instrumental temperatures

(i) Data stage:

D|(T′1,T
′
2)′ = µD + βDMD(T′1,T

′
2)′ + εD ,

P|(T′1,T
′
2)′ = µP + βPMP(T′1,T

′
2)′ + εP ,

B|(T′1,T
′
2)′ = MB{µB + βB(T′1,T

′
2)′ + εB},

V|V0 = (1 + εV )V0;

with εD ∼ AR(2)(σ2
D , φ1D , φ2D) εB ∼ iid N(0, σ2

B)

εP ∼ AR(2)(σ2
P , φ1P , φ2P) εV ∼ iid N(0, 1/64)
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BHM

• S, V0, and C: the time series vectors of solar irradiance, volcanism

and greenhouse gases

• V: the volcanic series with error.

• T1: Unknown temperatures requiring reconstruction

• T2: the observed instrumental temperatures

(ii) Process stage:

(T′1,T
′
2)′|(S,V0,C) = β0 + β1S + β2V0 + β3C + εT ,

εT ∼ AR(2)(σ2
T , φ1T , φ2T )
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Main results
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Figure 1: The reconstructions using tree-rings and pollen together with

forcings in three scenarios. a: modeling T and without noise; b: modeling T1

and without noise; c: modeling T and with noise.
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Main results
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Figure 2: Using smoothed spectrum of reconstruction residuals from the five

data models to illustrate the frequency band at which proxies capture the

variation of the temperature process (Li, Nychka and Ammann, 2010).
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Error structure

• Basic hierarchical Bayesian models:

Data: Proxy |Climate = α0 + α1f (Climate) + error

Process: Climate|Forcings = β0 + β1Forcings + error

or Climate = stochastic process

• Precise uncertainty quantification depends on appropriate modeling

of errors.

• Errors are usually assumed to be either short (AR(1) or AR(2)) or no

memory (white noise) in the reconstruction.

• Is short or no memory error structure sufficient?

• Is there long-range correlation?

(Barboza, Li, Tingly and Viens, 2014)
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Error structure - Long memory

A stochastic process is said to have long-memory if its autocovariance

function ρ(t) satisfies:

limt→∞
ρ(t)

ct−M
= 1

for some constant c and M ∈ (0, 1).

Or through Hurst parameter H,

ρ(t) ∝ t2H−2 for H ∈ (0.5, 1) for large t.
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Error structure - Data

• Temperature Anomalies (Celsius degrees): collected since 1850 over

a worldwide grid of climatological stations.

• HadCRUT3v (HAD): combined land air- and sea-surface

temperatures.

• CRUTEM3v (CRU): land air surface temperatures.

• 1209 biological proxies (Mann et al., 2008) collected over different

regions and different time horizons.

16



Assessment of different error structures

Memory Length

Scenarios P|T T |F or T Forcing

A long - fGn(H) long - fGn(K ) X

B short - AR(1) short - AR(1) X

C no memory no memory X

D long - fGn(H) long - fGn(K ) X

E short - AR(1) short - AR(1) X

F no memory no memory X

G short - AR(1) long - fGn(K ) X

H long - fGn(H) short - AR(1) X

Possible long memory (H and K not fixed)

No memory (H = K = 1
2 )

No external forcings: βi = 0, i = 1, 2, 3
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Hurst parameter estimation
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(d) CRU

– Parameter estimates for Scenario A (allow long memory on both

models and with forcing in the process model).

– H: Hurst parameter in P|T ; K : Hurst parameter in T |F .

– All significantly larger than 0.5!
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Assessment of different error structures
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• When forcings are included

- The prediction is not sensitive to the error structure, but the long

memory seems to improve the uncertainty quantification.

• When forcings are not included

- The long memory model is obviously the best choice.
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Current study in Barboza et al. (2019)

• More complete state-of-the-art proxy data (Pages2k data),

• Thorough exploration of data reduction methods

• Integrated Nested Laplace Approximations (INLA)

• Are we living in extraordinary times?
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Figure 3: Comparison of the distribution of trends of reconstructed anomalies

for different time horizons
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Knowledge about HIV

• Human immunodeficiency virus (HIV) can lead to acquired

immunodeficiency disease (AIDS)

• Nationally the number of newly diagnosed HIV cases has declined by

19% in the last decade

• Progress has been uneven across demographic groups and

geographic regions.

• e.g., Slower declines if any are seen among African Americans and in

the south of US
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HIV Data

• Annual new HIV diagnosis data from 2008-2014 at county level

across the United States (https://aidsvu.org)

• HIV rates are reported as the number of cases per 100,000 people

for a given county

• HIV rates are suppressed in any of the following situations:

• A county has very few cases (< 5) or has a small population size

(< 100)

• The state health department requested not to release its data to

AIDSVu due to re-release agreements with the CDC

• There are no counties in the state such as in Alaska, DC and Puerto

Rico.

• Due to the rareness of the disease and the confidentiality constraints,

only 25% of all possible county-time observations across the United

States have new diagnoses available in the given time frame.
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HIV Data

• Highest rates of diagnoses are in the South, West and Northeast.

• Negative rates indicate missing values.

HIV new diagnosis rates in cases per 100,000 during 2012 (aidsvu.org).
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Motivation

• The National HIV/AIDS Strategy identifies a key goal of intensifying

efforts in the communities with the greatest concentration of HIV

cases.

• Timely public health insights about the disease will aid in effective

public health action, particularly at the local level.

• Regional prediction of disease is central to orchestrating appropriate

public health responses.

• Developing models to predict future diagnoses should allow health

departments to intervene before the surge in new diagnoses occurs.
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Formulate the problem

Goal: Make county-level one year ahead prediction of new HIV diagnosis

rates using publicly available data

Major sources of variability in the new HIV diagnosis rates:

• Social and economic demographics and other STDs

(a) General demographic annual summaries by county

– United States Census Bureau

(b) Social and Economic variable

– American Community Survey

(c) Prevalence of other STDs such as chlamydia and syphilis

– healthindicators.gov

• Space-time dependency
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Particulars of our problem

• Rarity of disease leads to few to no incidents in many regions

• Limited reporting time span of only 7 years (2008-2014)

• A linear or quadratic temporal trend may impose too strong an

assumption

• Choose an autoregressive model with order 1 (AR(1)) to model the

temporal correlation

• Statistically unreliable to fit individual AR(1) model for each county

due to so few observations

• Evolution rates of neighboring counties are likely similar

A promising solution: Borrow strength from neighboring regions in both

space and time by taking correlation into account
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HIV Data

Focus on three concentrated areas of the US

• Florida – 67 counties, 75% of county-time observations available

• California – 58 counties, 59% of county-time observations available

• New England states: Connecticut, Delaware, Maryland,

Massachusetts, New Jersey, New York, and Pennsylvania – 199

counties, 74% county-time observations available collectively.
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Data expoloration

Figure 4: Spatial maps of independent ρ estimates using maximum likelihood

estimation for counties in Florida, California and New England.

Florida California New England

Statistic p-value Statistic p-value Statistic p-value

Moran’s I 0.0343 0.3216 0.1072 0.1389 0.2598 0.0003

Geary’s C 0.9610 0.3758 0.8098 0.0665 0.7384 0.0005

Table 1: Test Statistics and p-values for Moran’s I and Geary’s C on testing

the null hypothesis of no spatial correlation among ρi versas the one-sided

alternative hypothesis of positive spatial correlation.
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Model development

• Spatially varying autoregressive (SVAR) models (Nobre et al. 2011)

seems a good choice.

• Modeling the county specific ρ as a spatially dependent random

process using the conditional autoregressive (CAR) model developed

in Leroux et al. (1999),

• Allows for flexible county-specific autoregressive coefficients

• Makes the estimation of an AR(1) model for each county reliable by

borrowing strength from neighbors

• Reduces the rank of model, easing the potential for overfitting

• Compare them to (1) six competing models in the generalized mixed

effects modeling framework (Knorr-Held, 2000) and (2) two spatially

invariant autoregressive models.
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A Bayesian hierarchical SVAR model

Let Yi,t denote HIV rate for county i at year t and Zi,t = log(Yi,t).

The variance of Yi,t depends on its corresponding population size, i.e.,

ni,t of county i at time t, so does Zi,t .

Level I.

Zi,t = ηi,t(β,θ) + εi,t , εi,t∼N
(
0, σ2qit

)
• ηi,t : a spatio-temporal random process

• qit = c
ni,tYi,t

for c = 100, 000.
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A Bayesian hierarchical SVAR model

Level II. (Basic form of SVAR model)

ηi,t(β,θ) = XT
i,t−1β + ψi,tρi (Zi,t−1 − XT

i,t−2β) (1)

• XT
i,t−kβ: the linear effects of the previous year’s covariates

• ρi ∈ (−1, 1), i = 1, ...n: spatially varying AR(1) coefficients

• ψi,t =
√
qit/qi(t−1): ensure that ρi measures the correlation

between two random components, because the variance of Zi,t is

proportional to qit
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A Bayesian hierarchical SVAR model

We may add additional random effects

Variations of Level II model

ηi,t(β,θ) = XT
i,t−1β + ψi,tρi (Zi,t−1 − XT

i,t−2β) + φi (2)

ηi,t(β,θ) = XT
i,t−1β + ψi,tρi (Zi,t−1 − XT

i,t−2β) + φi + δi,t

• φ ∼ N(0,Σφ): Σφ follows Leroux et al.(1999):

Σφ = τ 2
φ[(1− λφ)I + λφR]−1

• δi,t : spatio-temporal interaction random effect
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Prior for ρ via a copula approach

A typical Gaussian prior is not applicable to model the spatial

dependency in ρ due to its truncated range.

⇒ We propose a copula approach, enabling the modeling of the marginal

distribution of ρi separately from its spatial dependency structure.

Use a Gaussian copula and assume Uniform(-1,1) marginal distribution

Joint density function of ρ :

π(ρ1, · · · , ρn) =
φΩ

(
Φ−1(ρ1+1

2 ), . . . ,Φ−1(ρn+1
2 )
)∏n

i=1
1
2φ
(
Φ−1(ρi+1

2 )
)

• ΦΩ(·) : joint CDF of a MV Gaussian distribution with zero mean

and Leroux et al. (1999) covariance structure.

• Φ−1(·) : inverse CDF of a standard normal random variable.
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Models for Comparison

Below lists eight different forms of ηi,t (1-6 are similar to those in

Knorr-Held, 1999) that will be compared to our SVAR model:

1. XT
i,t−1β,

2. XT
i,t−1β + φi ,

3. XT
i,t−1β + αt ,

4. XT
i,t−1β + δi,t ,

5. XT
i,t−1β + αt + φi ,

6. XT
i,t−1β + αt + φi + δi,t ,

7.∗ XT
i,t−1β + ψi,tρ(Zi,t−1 − XT

i,t−2β),

8.∗ XT
i,t−1β + ψi,tρ(Zi,t−1 − XT

i,t−2β) + φi ,

∗typical autoregressive models where ρ is assumed fixed for all counties.
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Prediction and Model assessment

Prediction: Obtain Ẑi,t+1 through forward sampling, then take

exponential and use the posterior median as the prediction.

– Hold 2014 data as testing data and make prediction for that year.

– Model assessment was made based on the following measures:

• Mean squared prediction error (MSPE)

• Predictive model choice criterion (PMCC) (Gelfand and Gosh, 1998;

Gneiting and Raftery, 2007)

• Continuous rank probability score (CRPS) (Gneiting and Raftery,

2007)

• Empirical coverage probability (ECP) at a 95% nominal level

• Observation of the previous time point as the baseline prediction
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Model comparison

Florida California New England

Model MSPE PMCC CRPS ECP MSPE PMCC CRPS ECP MSPE PMCC CRPS ECP

(1) 75.30 221.8 3.905 0.9574 7.231 94.84 1.456 0.9697 45.88 393.7 2.557 0.9196

(2) 56.89 223.0 3.906 0.9574 9.715 98.11 1.621 0.9697 66.43 399.3 2.949 0.9107

1 78.26 242.9 4.387 0.9787 10.42 113.9 1.843 0.9697 67.47 442.7 3.041 0.9821

2 58.04 242.0 4.152 1.0000 8.397 138.5 2.092 1.0000 61.41 416.3 2.751 0.9643

3 80.29 245.1 4.367 0.9362 10.28 106.4 1.748 0.9394 65.11 442.2 2.983 0.9018

4 74.91 275.2 4.650 1.0000 9.457 125.6 1.919 0.9697 64.09 455.9 2.958 0.9821

5 60.62 231.7 3.990 0.9787 7.951 116.2 1.801 1.0000 55.10 385.3 2.605 0.9018

6 67.73 240.5 4.223 1.0000 8.031 107.2 1.685 0.9697 63.31 411.1 2.722 0.929

7 76.86 230.8 4.106 0.9362 9.297 107.8 1.704 0.9697 58.65 436.5 2.838 0.9821

8 65.67 226.8 3.922 0.9574 8.289 107.9 1.646 0.9697 57.78 398.4 2.717 0.9286

Y ∗t−1 61.51 – – – 10.03 – – – 62.58 – – –

Bold are the smallest numbers of their respective columns.

• Model (1): Basic SVAR model

• Appears to provide the best prediction for California and New

England

• Model (2): Basic SVAR model + spatial random effects

• Provides the best prediction for Florida

• FL has the most insignificant spatial correlation in Moran’s I test,

therefore modeling spatial correlation only through ρi is insufficient
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Model comparison

• In model 8, the estimates for ρ are around 0.23, 0.18, and 0.17 for

FL, CA, and New England, respectively.

• The estimates for ρi in Models (1) and (2) are also significantly

different from zero at many counties

Spatial maps of posterior means of ρi from Model (1) for FL, CA and NE.
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Break down of the contribution from each term in Model (1) to the prediction

of 2014 new HIV diagnosis rates in California, where ρ∗i Z indicates the

contribution from ρi (Zi,t−1 − Xi,t−2β) and SVAR indicates the overall model

prediction.
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Observed (top) and predicted (bottom) new HIV diagnosis rates in 2014 for

Florida, California and New England using Model 2, 1, and 1, respectively.
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Background

The study of climate field reconstruction requires to compare two

space-time random fields (Li and Smerdon, 2012; Fremdt et al., 2013;

Horváth et al., 2013; Li et al., 2016)

• Mean

• Covariance

• Mean + Covariance

• Trend

• ......
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Background

Figure 5: Mean comparison between CCSM and its TTLH reconstruction.
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Background

Figure 6: ENSO teleconnection comparison between CCSM and its TTLH

reconstruction.
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Background

• The previous methods offer only an overview of the difference

between two spatiotemporal random fields as a whole

• Detection of local discrepancies between two random fields can be

more informative

• For example, if the two mean functions are different, where are the

differences located?

• We propose to compare the characteristics of two spatiotemporal

random fields at each location and then adjust the multiplicity due

to multiple comparison.
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Multiple Testing

• Let X (s; t) and Y (s; t) be two spatiotemporal random fields

observed over spatial locations, s ∈ D, and time t.

• Assume X (s; t) and Y (s; t) are stationary in time.

• Denote θX (s), θY (s) to be certain characteristics of the distribution

of X (s; t) and Y (s; t).

• We are interested in testing

H0,s : θX (s) = θY (s) vs. H0,s : θX (s) 6= θY (s)

simultaneously for all s ∈ D.
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Multiple Testing

• The family-wise error rate (FWER): the probability of making at

least one false rejection, e.g., Bonferroni method.

• The power of a FWER controlling procedure is greatly reduced as

the number of tests increases.

• False discovery rate (FDR): the expected proportion of false

rejections among all rejections (Benjamini and Hochberg, 1995), is

preferred in such case

• An FDR procedure is

• Valid: if it controls the FDR at the nominal level

• Optimal: if it has the smallest false negative rate (FNR)
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Our FDR control – Mirror procedure

• Assume a two-component mixture model for location wise p-values

• Derive optimal rejection region under the mixture model

• Derive cutoff value based on mirror property of f0

• Develop EM-algorithm to estimate the mixture model with either a

nonparametric or a semiparametric alternative density function
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Model for ps

Let ps be the p-value for testing H0,s against Ha,s .

We assume that ps follow the two-component mixture model:

f (ps ; s) = π(s)f0(ps) + (1− π(s))f1(ps ; s),

where

• π(s) ∈ [0, 1] is the probability that the p-value is from the null

• f0 and f1 are the null and alternative distributions, respectively

47



Model for ps

f (ps ; s) = π(s)f0(ps) + (1− π(s))f1(ps ; s),

• We assume that f0 is mirror conservative (Lei and Fithian, 2018)∫ a2

a1

f0(p)dp ≤
∫ 1−a1

1−a2

f0(p)dp, 0 ≤ a1 ≤ a2 ≤ 0.5.

• Assume f1(ps) is monotonically decreasing

• π(s) and f1(ps) are unknown and need to be estimated
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Our FDR control – Mirror procedure

• Derive optimal rejection region under the mixture model

LFDRs(ps) =
π(s)f0(ps)

π(s)f0(ps) + (1− π(s))f1(ps ; s)
≤ t.

• Derive cutoff value based on mirror property of f0

FDP(t) ≤
∑

s∈D 1 {LFDRs(1− ps) ≤ t}
1 ∨

∑
s∈D 1 {LFDRs(ps) ≤ t}

:= FDPup(t),

Set t∗ = max{t ∈ [0, 1] : FDPup(t) ≤ α}. We then reject H0,s if

LFDRs(ps) ≤ t∗.

• Develop EM-algorithm to estimate the mixture model with either a

nonparametric or a semiparametric density function
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Application with climate data

Figure 7: Mean comparison between CCSM and its reconstruction using

TTLH. The left plot shows the spatial mean of CCSM climate field and the

right plot shows the spatial mean of TTLH reconstruction together with the

testing results of nonparametric mirror. The black dots indicate where the

mean is different.
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Application with climate data

Figure 8: ENSO teleconnection comparison between CCSM and its TTLH

reconstruction. The plots show the correlation between the averaged

temperature over Nino3 region and local temperatures at each other location

with CCSM (left) and TTLH (right). The black dots indicate where the

teleconnection strength is different.
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Summary and Discussion

Briefly introduce some of my work in climate, public health and

methodology for spatio-temporal data

• Studies in paleoclimate reconstruction using BHM

• Prediction of new HIV diagnosis rate at county level

• Comparison between two spatio-temporal random fields
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