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Abstract

Quadratically parametrized smooth maps from one complex projective
space to another are constructed as projections of the Segre map of the
complexification. A classification theorem relates equivalence classes of
projections to congruence classes of matrix pencils. Maps from the 2-
sphere to the complex projective plane, which generalize stereographic
projection, and immersions of the complex projective plane in four
and five complex dimensions, are considered in detail. Of particular
interest are the CR singular points in the image. ! 2

1 Introduction

It was shown by [Whitney] that the complex projective plane CP? can be
embedded in R7. An example of such an embedding, where R is considered
as a subspace of C*, and CP? has complex homogeneous coordinates [21 :
z9 : 23], was given by the following parametric map:
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Another parametric map of a similar form embeds the complex projective
line CP! in R3 C C?:
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= m@%zh 2117 — |20/?).

[Zo : 21]
This may look more familiar when restricted to an affine neighborhood,
[20 : z1] = (1,2) = (1,2 + iy), so the set of complex numbers is mapped to
the unit sphere:
2z 2y |22 -1

H
z (1+|z|2’1+|z|2’ 1+ 22

);

and the “point at infinity,” [0 : 1], is mapped to the point (0,0,1) € R3.
This is the usual form of the “stereographic projection” map.

This article will consider embeddings of CP™ which generalize the above
examples by considering quadratic polynomials with arbitrary complex co-
efficients on terms z;Z;. By considering two parametric maps equivalent if
one is related to another by complex linear coordinate changes of the do-
main and target, the classification of these maps is reduced to a problem in
matrix algebra.

This project was originally motivated by the study of real submanifolds
of C", and in particular how the topology of a compact submanifold is
related to whether any of its tangent planes contain a complex line.

For example, [D] and [C1] considered real 4-manifolds immersed in C°
(or some other (almost) complex 5-manifold), which will generally have iso-
lated points where the real tangent space contains a complex line. Such
points are called complex jump points, complex tangents, or CR singular-
ities; a manifold without such points will be called “totally real.” Isolated
complex tangents can be assigned an integer index, which is 1 or —1 when
the submanifold is in general position, and which reverses when the sub-
manifold’s orientation is switched. For compact submanifolds, the sum of
these indices is then determined by a characteristic class formula. In the
case where the complex projective plane CP?, considered only as a smooth,
oriented 4-manifold, is immersed in C®, it cannot be totally real, and the in-
dex sum for a generic immersion is the first Pontrjagin number, p;CP? = 3.
The existence of an embedding with exactly three complex tangents follows
from a lemma of [D1] which uses results of Gromov. One of the main results
of this paper is an explicit formula defining such an embedding (Example
5.3).

The next Section will set up a general construction for mapping a com-
plex projective m-space into a complex projective n-space. Section 3 is



a brief review of the topology of generically immersed real submanifolds,
which will define the notion of “general position” and give a formula for
the expected dimension of CR singular loci. Sections 4 and 5 will consider
immersions of CP™ in CP", in the cases where m = 1, n = 2, and m = 2,
n = 9.

2 The projective geometric construction

The complex projective m-space, CP™, is the set of complex lines containing
the origin in C™*!, so each line z will have homogeneous coordinates [z :
21 ¢ ...t Zm|. A nonzero vector spanning the line z will be written as
a column vector 2. A vector Z can be multiplied by an invertible square
matrix A with complex entries: Z — AZ, and this defines a group action
on CP™. The set of nonzero complex scalar multiples {c- A4, ¢ # 0} is an
element of the projective general linear group, PGL(m + 1,C). (Usually,
the equivalence class of matrices {c- A} will be abbreviated as A.)

The following map is formed by all the (m + 1)? quadratic monomials
zjw; in the components of two vectors Z and &:

s: QML ot lmAL)?
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Since it has the property that s(A- 2, u- W) = A+ - s(Z, %) for all \, u € C,
it induces a map:

s:CP™ x CP™ — Cpm™+2m

(zyw) = [2owo : Z0W1 & . Z20Wpy & vt ZipWQ & - ZWin],

called the Segre map, which is a holomorphic embedding.

Define a vector space isomorphism from the space of d x d complex
matrices to the space of column d?-vectors by stacking the columns of the
matrix:

vec: M(d,C) — c”
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This is the well-known “vectorization” map from matrix algebra ([HJ2]).
Denote its inverse by k : c¥ - M(d,C). The induced map CP¥ ! —

CP(M (d,C)) is also denoted k.



The composition of the Segre map with the isomorphism % (in the case
d = m+1) has the following interpretation in terms of matrix multiplication:

(kos)(Z,w) =w- 7. (1)
7T is a row vector, the transpose of 7, so the RHS is a (line spanned by a)
rank < 1 matrix of size (m + 1) x (m + 1).

This construction could be considered more abstractly. The following
(optional) sketch links the above notation with standard notions from ge-
ometry and multilinear algebra (see [H], [MB], [Cz]). Let V be a finite-
dimensional complex vector space, and denote by V* the “dual” space of
C-linear functions ¢ : V. — C, and by End(V) the set of endomorphisms
V' — V. Then, define a map k : V*® V' — End(V), first by stating the
following formula for tensor products: for o, @ € V, and ¢ € V*,

k(¢ @ @) : 7 — ($(7)) - W,

and then defining the map k for all elements of V* ® V' by extending by
C-linearity, to get an isomorphism of vector spaces. Let s be the universal
bilinear function V* x V — V*®V. Then, a vector Z € V determines a dual
vector ¢, by ¢ : #'+— 2T .7, and (kos)(¢, W) = k(¢®1w) is an endomorphism
taking every vector ¥ to some multiple of ), just as in Equation (1).

The next ingredients in the construction are a number n such that 0 <
2m < n < m?+2m, and a (n+1) x (m+1)? matrix P with complex entries
and full rank n + 1 < (m + 1)2, called the coefficient matrix. The linear
transformation C(m+1)° — Cntl (also denoted P) induces a “projection”
map cpm’+am CP™, (also denoted P) defined for all elements z except
those lines in the kernel of P. Let CP"™ have homogeneous coordinates
(Zo ...t Zy).

Formally, the composition P o s can be written:

(zy,w) = [Py:...: Py,

with complex coefficients p;.c’j (the (n + 1) x (m + 1)? entries of matrix P)
on each term:
m . .
Pk = Z pﬁc’]ziwj.
i,j=0
P o s will be a well-defined map CP™ x CP™ — CP" if the image of s
is disjoint from the kernel of P, and otherwise will be a “rational map,”

well-defined only at each point whose image under s is not in the kernel of
P.



The previously mentioned bound 2m < n means that the dimension of
the domain of Pos : CP™ x CP™ — CP" is less than or equal to the
dimension of the target. It also implies that the dimension of the image of s
in CP™’+2m ig less than the codimension (n 4 1) of the (projective) kernel
of P, so that generically, but not always, the image of s is disjoint from the
kernel of P.

Example 2.1. The m = 1, n = 2 case is in the assumed dimension range. A
3 x4 matrix P with rank 3 has a kernel equal to a line in C*, or a single point
x € CP3. Pos:CP! x CP! — CP? is well-defined if the two-dimensional
image of s misses the point 2 in CP?, and otherwise is defined on all but
one point of CP' x CP'.

Although s is an embedding, the composition P o s may not be one-to-
one, and may also have singular points, where its (complex) Jacobian has
rank less than 2m.

Definition 2.2. For a given pair m, n, two coefficient matrices P and () are
“c-equivalent” if there exist three invertible matrices, A, B € GL(m+1,C),
C € GL(n + 1,C) such that for all (z,w) € C*t! x CH!,

(Qos)(Z,%) = (CoPos)(AZ Bw) e C**.
It is easy to check c-equivalence is an equivalence relation.

Theorem 2.3. P and () are c-equivalent if and only if there exist A, B €

GL(m +1,C) such that the following (m? 4 2m — n)-dimensional subspaces
of M(m + 1,C) are equal:

k(ker(P)) = B - (k(ker(Q))) - AT.
Proof. For invertible matrices A, B € M(m + 1,C), the map
7 — vec(B - (k()) - AT)

is a C-linear invertible map Cm+D* — C(m+1)?  Its representation as a
square matrix will be denoted [A @ B].
Using Equation (1),

(kos)(AZ,BwW) = (B-w)-(4-2)T

— B-w-H. AT
= B-((kos)(z ) AT
= k([A® B]- (s(Z,4)))

ot



Since k is an isomorphism,
s(AZ, BW) = [A® B] - (s(Z,0)).

(This motivates the notation [A® B], in terms of the abstract version of the
construction. For present purposes, [A® B] is merely a convenient label; see
[HJ2] or [Cq] for the connections between vec and tensor products.)

So, from the definition of c-equivalence,

(Qos)(Z,W) = (CoPos)(AZ, BW) = (Co Po[A® B])(s(Z,)),

and since the image of s : C™! x €1 — C(m+1)” spans the target space,
Q@ and P are c-equivalent if and only if there exist A, B, C so that

Q=C-P-[A® B].

This equation says @ and P - [A ® B] are row-equivalent, and therefore also
“solution-equivalent,” i.e., there exists such an invertible C if and only if
ker(QQ) = ker(P - [A ® B]) (see [MB], [HJ1]). Of course, this equality of
subspaces of Cm+1)” g equivalent to the equality of subspaces of M(m +
1,C):

k(ker(Q)) = k(ker(P - [A ® B])).

Suppose K € k(ker(P - [A® B])). This is equivalent to
0= (P-[A® B])(vec(K)) = P -vec(B - K - AT),
by definition of [A ® B], or, equivalently,
vee(B-K -A") €ker(P) <= B-K-A" € k(ker(P)).
This proves the claim of the Theorem. [ |

It follows immediately from the Definition that if P and @ are c-equivalent
coefficient matrices, then there exist automorphisms A, B € PGL(m+1,C),
C € PGL(n 4+ 1,C) such that the compositions of induced maps are equal
for all (z,w) € CP™ x CP™ where the quantities are defined:

(Qos)(z,w) =(CoPos)(Az, Bw) € CP".

Geometrically, C corresponds to a linear transformation of the target CP",
and the maps (z,w) — (Az, Bw) form a subgroup of the group of holo-
morphic automorphisms of the domain CP™ x CP™. This is the connected



component containing the identity in the automorphism group, and a proper
subgroup since (z,w) — (w, z), for example, is holomorphic.

The converse assertion, that if there exist automorphisms such that the
above induced maps are equal, then the corresponding coefficient matrices
are c-equivalent, is another issue, which we will not address here.

The last map to be introduced in this Section is the totally real diagonal
embedding,

A:CpP™ — CP™xCpP™
z = (z2).

The image of A is exactly the fixed point set of the involution (z,w) —
(w, z), and the product space CP™ x CP™ could be considered the “com-
plexification” of its real submanifold A(CP™). The composition s o A :
CP™ — CP™ +2m ig a smooth embedding, but not holomorphic for m > 0.
It has the following form:

2> [2020 12021 1 oo 1 20Zm e ZmZ0 e - - ZmZm)-

[MM] calls s o A the “skew-Segre” embedding, and shows how it is related
to the Mannoury embedding of CP™ into an affine space Ccm? +2mt1 (the
m = 2 case will appear in Example 5.6).

For a projection map P, the composition Poso A : CP™ — CP" is also
smooth where it is defined, but not necessarily one-to-one or nonsingular.
It is possible that P o s o A is an embedding even if P o s is not.

Example 2.4. The stereographic projection from the Introduction can be
written as a map CP! — CP?,

[Z() : 21] — [|ZO|2 + |2,’1|2 122021 : |2,’1|2 — |ZO|2],

so the image is contained in the affine neighborhood {[Z) : Z; : Z3] : Zy # 0}.
The map s o A in this case has the form

[Z[) : Zl] — [2020 12021 2120 : 2151],
and the coefficient matrix (acting on columns) is

1
P = 0
-1

o O O
o NN O
—_ O =

3x4



Note that ker(P) is the complex line [0 : 1 : 0 : 0], and this point is in the
image of s, so the composition P o s : CP' x CP' — CP? is not defined
at the point z = ([1 : 0],[0 : 1]). The singular locus in the domain is a
1-dimensional subvariety S defined by zywy = 0, which is the union of two
lines,

§=((CP" x {[0: 1]} U{[1:0]} x CPT) \ {([1: 0],[0: 1])}

(their point of intersection is z, which is not in the domain). The real
diagonal A(CP') does not meet x, and meets S at two points, ([0 : 1],[0 : 1])
and ([1:0],[1 :0]). The image of S is a set of two points,

(Pos)(S)={[1:0:1],[1:0: —1]} C CP?.

The image (P o s o A)(CP') is a sphere which is contained in the affine
neighborhood {[Zy : Z1 : Zs] : Zy = 1}, and the two points in the image
of the singular locus are the “North and South Poles” of the stereographic
projection where (not coincidentally) the tangent plane to the sphere is a
complex line.

Example 2.5. The first example from the Introduction falls in the m = 2,
n = 4 case, and the coefficient matrix is

1000 100O01
0000 O1O0O00O0
P=]10000 00100
0100 O0OO0OOO0OO
1000 —-1000O0

5%9

As in the previous Example, the top row of P is the sequence of coefficients
from the denominator. The kernel of P is a 4-dimensional subspace of C?,
equal to the set of vectors of the form

T
(Cla 07627637 61707 07647 _261)

for any complex constants cy,...,cs. The kernel of P meets the image of s
at exactly three points, corresponding to

{((0:0:1],]0:1:0]),(0:1:0],[1:0:0]),([1:0:0],0:0:1))}

in the domain of s, so P o s is not defined at those three points. The real
diagonal A(CP?) does not meet any of the three points, and P oso A :
CP? — CP* is an embedding into the affine neighborhood {Zy = 1}.



There are several ways to calculate the intersection of ker P and the
image of s. An easy way is to use Equation (1), recalling that a matrix is
in the image of k o s if it has rank 1. In the above Example, k(ker P) is the
subspace of matrices of the form

C1 C3 0
0 a1 ¢
C 0 —201

A matrix of this form has rank 1 only if ¢; and two out of three of the other
coefficients are 0, for example,

00 0 0
001 |=[1]-(01).
00 0 0

Lemma 2.6. The subgroup of PGL(m+1,C) x PGL(m + 1,C) that leaves
invariant the set A(CP™) is the set of automorphisms of the form (z,w) —
(Az, Aw).

Proof. A denotes the entrywise complex conjugate of the matrix A, but the
above automorphisms are still holomorphic, and obviously form a subgroup.
For (z,z) € A(CP™), (Az,Az) = A(Az), so this subgroup fixes the image
of A. Conversely, if (A,B) € PGL(m + 1,C) x PGL(m + 1,C) has the
property that for all (z,z) € A(CP™), (Az, BZ) is also in A(CP™), then
Az = Bz = Bz for all z, so A = B.

Definition 2.7. For a given pair m, n, two coefficient matrices P and @)
are “r-equivalent” if there exist two invertible matrices A € GL(m + 1,C),
C € GL(n + 1,C) such that for all (z,w) € C*t! x CH!,

(Q o s)(Z,W) = (CoPos)(AZ A).

This is obviously an equivalence relation, and if P and () are r-equivalent,
then they are also c-equivalent. Lemma 2.6 gives a geometric interpretation
of the relationship between the two equivalences.

Theorem 2.8. P and Q are r-equivalent if and only if there exists an in-
vertible matriz A € M(m + 1,C) such that the following (m? + 2m — n)-
dimensional subspaces of M(m + 1,C) are equal:

k(ker(P)) = A - (k(ker(Q))) - AT.



Proof. The Proof of Theorem 2.3 goes through with only the obvious modi-
fications. Since s(AZ, Aw) = [A® A]-(s(Z,)), the following are equivalent:
Q and P are r-equivalent; Q = C o P o [A ® A]; ker(Q) = ker(P - [A ® A]);
k(ker(Q)) = k(ker(P - [A ® A])). Also, K € k(ker(P - [A ® A])) <:i

A-K - AT € k(ker(P)).

In matrix algebra, a subspace of a space of matrices is called a “pen-
cil,” and matrices or pencils K, M satisfying M = AK A" are “congruent”
or “conjunctive.” Theorems 2.3 and 2.8 were motivated by a similar con-
struction in [CSS], where the real projective plane was mapped to RP? by
projections of the Veronese map, and the (finitely many) equivalence classes
of such projections were found by classifying congruence classes of real sym-
metric matrix pencils.

The r-equivalence of matrices P and () also implies the existence of
automorphisms A € PGL(m + 1,C), C € PGL(n + 1,C) such that the
compositions of induced maps are equal:

QosoA=CoPosoAoA:CP™ — CP".

As with c-equivalence, the A and C' matrices from Definition 2.7 are complex
automorphisms of the domain and range of a map CP™ — CP", and r-
equivalence seems to be a natural way to classify maps of the form PosoA.

Once again, the converse assertion, whether the equality of induced maps
implies the r-equivalence of matrices, will not be treated in general. However,
something even stronger can be proved in the case m = 1, n = 2. It will
follow from the classification of Theorem 4.3 that if there are automorphisms
A, C such that Qoso A and CoPosoAo A, as maps from CP' to CP?,
have the same image, then P and () are r-equivalent matrices.

If the images of Poso A and Q o s o A are both contained in some
affine neighborhood, as in the two examples from the Introduction, a weaker
notion of equivalence would allow real-linear transformations of the affine
target space. However, such transformations could distort the interesting
CR singular structure.

3 Review of complex tangents

The following general facts about real submanifolds of high codimension in
C™ are recalled from [D2], [C1], which both generalize these ideas to real
submanifolds of almost complex manifolds, and give further references on
this subject.

10



Consider 0 < d < n, and an oriented manifold M of real dimension d
inside C™, where C™ can be described as a 2n-dimensional real vector space,
together with a real-linear complex structure operator J such that Jo J =
—Id. If the tangent space at a point € M satisfies T, MNJT, M = {6}, ie.,
the subspace meets its rotation by J only at the origin, then 7T, M is called
“totally real.” This implies that the subspace T, M contains no complex
lines. The manifold M is also called “totally real at x,” and a “totally real
submanifold” if it is totally real at every point.

The totally real subspaces form a dense open subset of the Grassmann
manifold G(d,2n) of all real, oriented, d-dimensional subspaces in C". The
subspaces T which are not totally real form a subvariety of real codimension
2(n —d + 1) in the d(2n — d)-dimensional space G(d,2n). More generally,
T N JT is always a complex subspace of C", and the set of d-planes T' such
that dime TN JT > j is a subvariety D;. D; \ D4 is a smooth, oriented
submanifold of real codimension 2j(n —d+ j) in G(d, 2n). If the Gauss map
vz TpM of a submanifold M in C" misses D; for j > 0, M is totally
real. Otherwise, M has “CR singular” loci, indexed by 7,

Nj={z € M:~(z) € D;} = {z € M : dimg T,M N JT,M > j},

which have an “expected” codimension 2j(n — d + j) in M. The usual
warnings about intersections apply — N; could be empty, and need not be
a submanifold of M. Example 5.4 will demonstrate an exception to the
expected codimension formula.

When the dimension d is equal to 2j(n — d + j) for some j, the locus N;
is expected to be a set of isolated points. For the purposes of this article,
M is said to be “in general position” if d = 2j(n — d + j), y(M) meets D;
transversely in G(d, 2n), and Nj;1 = @. Then, the “index” of each point in
Nj is the oriented intersection number, &1, of v(M) and Dj.

Example 3.1. A real n-manifold immersed in C" is expected to have com-
plex tangents along a locus Nj of real codimension 2. A manifold with
nonzero euler characteristic cannot have a totally real embedding in C”.
The stereographic embedding from the Introduction is an example of a 2-
sphere embedded in C? with two complex tangents.

Example 3.2. In the geometric construction of the previous Section, the
complex projective m-space (real dimension d = 2m) is mapped to a complex
n-manifold with 2m < n. The expected behavior is that the image will be
totally real outside a locus Ny of real codimension 2(n —2m + 1). So, when
the real dimension is less than this number, 2m < 2(n — 2m + 1) <=

11



m < %(n + 1), the image of CP™ will generically be totally real in CP™.

Otherwise, N1 will generically be either empty, or of real dimension 2m —
2(n—2m+1)=23m —n—1).

Example 3.3. For a real 8-manifold in general position in a complex 8-
manifold, the locus of complex tangents is a (possibly empty) 6-dimensional
subset Ny, and the points £ where 7 = dim¢ T, N JT, = 2 will form a subset
Ny of isolated points in Nj.

A complex automorphism of the ambient space will not change the CR
singular structure of any real submanifold; the dimension of T, M N JT, M
remains invariant under any local biholomorphism around the point z. Also,
suppose there is a holomorphic map f from one complex manifold to another,
so that f is an embedding when restricted to a neighborhood of a point z in
the domain, and M is a submanifold in this neighborhood which is totally
real at . Then the image f(M) is a submanifold in a neighborhood of f(z),
and f(M) is totally real at f(z).

In particular, two maps Poso A and @ o s o A with r-equivalent coef-
ficient matrices will have images with the same number and dimension (j)
of complex tangents. Given a coefficient matrix P, and a point (z,Z) where
P o s is nonsingular, the restriction of P o s to a neighborhood of (z, 2)
will be an embedding. Since A(CP™) is totally real in CP™ x CP™, its
image will also be totally real at (P o so A)(z,2) € CP™. The only place
a complex tangent could occur in the image of P o s o A would be in the
singular value set of P os. This was already observed in Example 2.4, and
this phenomenon will be the crucial step in finding the exact CR singular
locus of some immersions in Section 5.

4 Real spheres in CP?

This Section will cover the m = 1, n = 2 case of the construction from
Section 2, establishing the c-equivalence and r-equivalence classes of 3 x 4
coefficient matrices, which correspond to maps from CP' x CP! and CP!
to CP2.

Theorem 4.1. There are two c-equivalence classes of 3 x 4 matrices P,
characterized by the rank of k(ker P).

Proof. Of course, by “rank(k(ker P))” we mean the rank of a non-zero ma-
trix which spans the line.

12



From Theorem 2.3, the c-equivalence classes are defined by classify-
ing k(ker P), a one-dimensional subspace of M (2,C), spanned by some
nonzero matrix K, up to the following equivalence relation: given any
A, B € GL(2,C), the following complex lines are equivalent:

{c-K:ceC} ~{c-AKB:ce C}.

The first case is where K is nonsingular, in which case choosing A = K1,
B = Id, shows that all such subspaces are equivalent to the subspace
spanned by the identity matrix.

The second case is that K is singular, and since it spans a line, it has
rank 1. It is a straightforward calculation to check that there exist A, B so

that AKB = ( L0

0 0 >, so all P so that K has rank 1 are c-equivalent. [l

To summarize, the two classes of coefficient matrices P can be distin-
guished in several different ways.
Case 1: The following are equivalent.

1 0 0 -1
e Pisc-equivalentto | 0 1 0 0
0 01 O

e There exist A, B, C, so that (C o P o s)(Az, Bw) = [zowp — z1wy :
Zowy : Z1Wo.

e k(ker(P)) is spanned by a rank 2 matrix, so ker(P) does not intersect
the image of s, and P o s is defined on all of CP' x CP!.

Case 2: The following are equivalent.

1 0 01
e P is c-equivalent to 0 0 2 0
-1 0 0 1

e There exist A, B, C, so that (C o P o s)(Az, Bw) = [zowp + z1wy :
221wy : zywy — Zowo).

e k(ker(P)) is spanned by a rank 1 matrix, so ker(P) intersects the image
of s at one point, and P o s is defined on all of CP' x CP! except for
one point.

In some higher-dimensional cases where ker(P) is still just a line, Theo-
rem 4.1 easily generalizes, and we only sketch a proof.

13



Theorem 4.2. For n = (m + 1)2 — 2, so that the kernel of each of the
coefficient matrices P, Q, is one-dimensional, P and @Q are c-equivalent
if and only if rank(k(ker(P))) = rank(k(ker(Q))), so there are m + 1 c-
equivalence classes.

Proof. The rank of a matrix is the only invariant under the equivalence of
K and AK B (see [HJ;], §3.5). The kernel of P is spanned by some non-zero
(m + 1) x (m + 1) matrix, which can be put into a diagonal normal form
with 1 and 0 entries, according to its rank, 1,...,m 4+ 1. Theorem 2.3 then
establishes the c-equivalence classes. [ |

The two cases of Theorem 4.1 break down into more cases under r-
equivalence, and there will be some continuous invariants.

Theorem 4.3. The r-equivalence classes of 3 X 4 matrices P are character-
ized by the congruence class of k(ker(P)), each class corresponding to exactly
one of the following normal forms for basis elements of k(ker(P)):

o ((1) g), a = cos(f) +isin(f), 0 < 0 < .

0 1
o(ﬂo>,0§ﬂ<l.

0 1
'(1 z)

1 0
.(00>.

Proof. The correspondence between r-equivalence and congruence of the ker-
nels was established in Theorem 2.8, so it is enough to find the congruence
classes of the one-dimensional kernels of P. If K spans ker(P), it can be
decomposed into its Hermitian and skew-Hermitian parts, K = K; + 1K,
K, = 3 (K + K"), K, = 5;(K — K"). This is somewhat arbitrary, since
K spans a complex line, and the decomposition is not respected by com-
plex scalar multiplication. However, the decomposition is respected by the
congruence operation: (AKAT), = AK, A", and there is a well-developed
theory of simultaneous congruence for pairs of Hermitian matrices K, K.

Following [HJ;] §4.5, there are two main cases, the first is where K}, is
nonsingular. Then, there are a few possible normal forms for pairs, according
to the following list.
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0 -1 0 -
T D W G P

In each of these cases, recombining the two matrices as K = Kj, + 1K, then
scaling by a complex number ¢, and then possibly using another congruence
transformation, will bring K to one of the normal forms claimed in the
Theorem.

; 1 0
L K= < l—i-oz)q 1+0i>\2 ) spans the same line as ( 0 iiiﬁf ) As

A1, A2 can be any real numbers, the fraction can be 1, or any

L0 >,AK[1T is of the form
0 =z

1+iXs
1+iA1

non-real complex number «. For A = <

( L (,) >, so the entry « can be scaled to have absolute value 1,
0 zrxo

and can be any element of S C C except —1. Then, congruence by

Oltasfoslotoao—-losoca
1 o ) TSNS g o 0 1) %o o)™

be assumed to lie in the closed upper half-plane, and the congruence
classes are parametrized by a = cos(#) + isin(f), for 0 <0 < «.

141\ 0 . 1 0
2. K = ) h 1 ; .
( 0 1_ 'L>\2 > spans the same line as ( 0 _%

By the same calculations as in the previous case, the lower right entry
can be scaled to any element of S! except 1 € C, so this case overlaps
with the previous to give a = cos(f) + isin(f), 0 < # < m. By the
Law of Inertia ([HJ;]), the « = 1 and o = —1 cases are not equivalent.
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It is a straightforward calculation to check that the lines spanned by
matrices with different values of o in the upper half-plane are not
congruent.

3. This case is the same as case 1, since K spans the same complex line
as the matrix from case 1.

0 1+«

4. In this case, K = L
1+ 0

). Let a = ia, and assume a #

14+a

. 0 1 . _
—1, so K spans the same line as < 1—a ) The fraction =2 can

0
1+a
assume the value 1, or any other complex number not on the unit

circle. Congruence by the matrix ( > can rotate the value of

0
the fraction by £, to some (3 on the nonnegative real axis. As in case 1,

1
10 transforms (3 to 1/, so that the congruence
classes can be represented by # € [0,1]. However, the 8 = 1 case is
Hermitian, and congruent to the & = —1 matrix from case 1. The
a = —1 case turns out to be congruent to the § = 0 case. It is
straightforward to check the representatives for different values of 3
are pairwise inequivalent and also not equivalent to the matrices from
cases 1 and 2.

5. K = ( 0 1+iA ) spans the same line as < 01 ) Then

< 0
congruence by

144X 1 I Y
1 _
using A = ( A 1_3)\2 ), AK AT is proportional to ( (1) 1 ) It is
2

easy to check this matrix does not belong to the previous two families
of equivalence classes.

6. This case is the same as the previous.

The second main case, not addressed in [HJ;], is where the Hermitian part
of K is singular. For some K, its Hermitian part could be singular, while
the Hermitian part of a complex scalar multiple ¢ - K is nonsingular. Such
cases fall into the above classes, so it is enough to consider those K # 0 such
that det(3(c- K +¢-K™)) =0 for all ¢ € C. The Theorem will follow from
. . 1

the claim that any such K spans a line congruent to the span of < 0 g )

The proof of the claim involves some elementary matrix calculations, as
in the previous paragraphs, but here the details will be given. Let K =
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( 3 ? > be an arbitrary nonzero matrix with complex entries, and let
¢ = = + iy be a nonzero complex number. For the Hermitian part to be

singular for all values of ¢, the following equation must hold for all z and y.

0 = det(c-(‘;‘ ?)ﬂ(? Z))

= (ad — By) + (ad — B7) + ce(@d + ad — BB —v7)
= 2*(ad — By +ad — By + ad + ad — BB — vYy)
+y*(—ab + By — ad + By +ad + ad — BB — v7)
+2izy(ad — By — ad + 7).
Subtracting the coefficients on x? and y? shows Re(det(K)) = 0, and the

coefficient on the zy term must also be zero, so Im(det(K)) = det(K) = 0.
The matrix K is rank 1 and also satisfies

ad + ad = BB+ 7. (2)

If « # 0, then K is proportional to ( i ﬁﬁ'gy >, and by Equation (2),

By +By=18+ 7% so|B—7*=0and y=p. If 3 =0, K is as in the
claim, and otherwise, the claim follows since

(5 ) G ) G )= (o),

If = 0, then by Equation (2), § = v = 0, and K is proportional to

0 0 . 10 . 01
(0 1>,wh1chlsalsoc0ngruentt0<0 0>,us1ngA—<1 0)‘ To

see that this normal form for K is not congruent to the other rank 1 matrix
from the above case 4, where 8 = 0, suppose

a by (1 0Y)\ _faa ac\ [0 ¢

c d 00 ~\a ec ) \0 0 )’
for some ( € C. This would imply a = ¢ = 0, contradicting the requirement
that A is invertible. i

[« liw]|
SISY

The classification from Theorem 4.3 can be interpreted geometrically.
In terms of Theorem 4.1, the rank 2 case of c-equivalence splits into in-
finitely many r-equivalence classes, and the rank 1 case breaks up into two
r-equivalence classes. The off-diagonal rank 1 case, where 8 = 0 in the
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. 1 . . .
matrix ( g 0 >, is in the same r-equivalence class as the stereographic
projection from Example 2.4, where ker(P) intersects the image of s, but

not the image of so A.

Example 4.4. The other rank 1 case from the Theorem is K = < (1) 8 ),

and a matrix P, such that K spans k(ker(P)), is
01 00
P=[0010
0001
The parametric map is of the form

PosoA: [Z() : 21] — [2’051 AT 2121],

differing from the stereographic case in that the image s o A(CP') meets
the kernel of P, so [1 : 0] is not in the domain of P o so A. This map is
one-to-one with domain C, [z : 1] — [z : Z : 1], and its image is a totally real
plane in an affine neighborhood, {[Zy : Z| : Z3] : Zy = 1, Z1 = Zy}.

Example 4.5. The isolated rank 2 case, K = ( (1) 1 ), corresponds to a
matrix
10 0 0
P=|01 -1 0 |,
00 1

and a parametric map of the form
PosoA: [Z() : 21] — [2’050 12021 — 2120t 2120 + ’L'Zlﬁl].

The map is defined for all [y : z1], and restricting to the affine neighborhood
[1: 2] in the domain gives z — [1 : Z — z : z + i2Z], or a real map

(z,y) = (X,Y,Z) = (<2iy,z,y +2° +y*) € (i-R) x R C C°.

The image of this restriction is a paraboloid in three real dimensions, with
no tangent planes parallel to the complex line X = 0. The set A(CP')
meets the singular locus of P o s at only one point, A([0 : 1]). Considering
the restriction of P o s o A to the neighborhood [z : 1], checking its (real)
Jacobian shows that it drops rank at [0 : 1]. P oso A is not an immersion
at that point, and the map’s image does not have a well-defined tangent
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plane at the singular value [0 : 0 : 1]. It is possible to choose a different
representative coefficient matrix, @), equal to C - P for some automorphism
C,

11 1 2
Q=101 -1 0
00 1 i

so that the image of QosoA is contained in the Zy # 0 affine neighborhood.
Note that

2020 + 2021 + 2120 + 212121 = |Zo + Z1|2 + (—1 + 27:)|Zl|2

is complex-valued but never 0.

. 1 . .
Example 4.6. The matrices < >, 0 < B < 1, correspond to inequiv-

0
B 0
alent embeddings of CP! in CP2. Representative matrices are

1 0 0 1
P=| o0 2 -23 0 |,
10 0 1

which define representative parametric maps:
[Z() : 21] — [2’020 4+ 2121 : 22021 — 202120 : 2171 — 2020].

The B = 0 case is a parametrization of a sphere in a real hyperplane inside
the Zy = 1 affine neighborhood, and is r-equivalent to the stereographic
projection from Example 2.4. For any 3, (Poso A)([0:1]) =[1:0: 1].
Using coordinates z = x + iy on the zy = 1 neighborhood in the domain,
and considering the Zy = 1 neighborhood in the target, P o s o A restricts
to

1:2] = [14+22:22—202z:22—1]
20(1-0) —2y(1+0) z*+y° -1
1+224+y2" 1422 +y?" 1+ 22442

(x,y) = (XvaZ):( )

The image (P o so A)(CP') is an ellipsoid,
X Y

2 2 2 _
(=5 + )+ 2° =1
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Solving for Z defines two hemispheres in the ellipsoid, each as a graph over
the XY -plane,

X2 Y?
7= i%‘ T-—p2  T+p"

2 2
- 0=~ g+ OO)
= +(1- %(}(2 +V 45 _ZfBQ (X*-Y?)+0(3))
z = +£1F 2(1%[;)2(7:17:1 + %(z% +23)) + O(3).
The coefficient % has values in [0, %) for g € ]0,1). It is Bishop’s quadratic

invariant for elliptic complex tangents ([B]).

Example 4.7. A special case of the diagonal normal form is ( (1) _01 ),

which is congruent to the 8 = 1 case of the previous Example. Geometrically
it is the 0 — 17 limit of the ellipsoids, which deflate into a closed, elliptical
disc contained in a real 2-plane. A representative coefficient matrix is

1 0 01
P=1010 0],
0010
and the parametric map

[Z() : Zl] — [2050 + 2121 2921 : 2150]

is two-to-one except for a circular singular locus. The image is contained in
the totally real plane Zs = Z; inside the affine neighborhood Z; = 1.

1
0 1
where & = 1 in Theorem 4.3. Considering a coefficient matrix

Example 4.8. The Hermitian matrix K = < ) is also a special case,

00 —1
0o o0 |,
1

1
P=1|0
0 0

1
0
the parametric map

[Zo : 21] — [2020 — 2121 1 2021 : 2150]
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is a two-to-one submersion, where antipodal points are identified:
(PosoA)([z1 : —2p]) = [z2121 — 2020 : —2021 : —2120] = (Poso A)([zo : z1])-
The image is a (totally real) real projective plane in CP2.

Example 4.9. The only remaining cases from Theorem 4.3 are the diagonal
matrices with @ = cos(@) + isin(f), 0 < 6 < m. For each «, a representative
coefficient matrix is

- 0 01
P=| 0 3 5 0],
0 -4 £ 0

which defines a parametric map
_ _ 1, % _ _
PosoA:|zy:z1] = [2121 — azp2p : 5(2021 + 217p) : 5(—z0z1 + 2120)].

The points [0 : 1] and [1 : 0] both have image [1 : 0 : 0], but otherwise the
map is one-to-one. The singular locus of Pos is the set {([z : z1], [wo : w1]) :
z1wy + azpwy = 0}, which does not meet the image of A. The composition
P oso A is an immersion with one double point, and the image is totally
real in CP?, and contained in the Zy # 0 affine neighborhood. Restricting
to the [1 : z] neighborhood in the domain, with z = z + iy, « = a + bi,
defines a parametric map R? — R*, with target coordinates Z; = x; + iy,
Zy = xa + iYyo:

Z2+Z zZ—z

(Z1,Z5) = ( )

2(zz —a)’ 2i(2Z — )
(z1,91,72,Y2)

1 3 2 2 3
= @i ags @ Ty - wewh—yrt =yt 4 ya, —yb).

.
(z,y) =

The image in C2 = R* is exactly the common zero locus V,, of the following
real polynomials:

Y12 — T1Y2 (3)
b (233 + 2275 + yiys + (25 + y3)?) — braye — ays (4)
b (22 + y2)? — (73 + y3)?) — bryyy + broye + ays — ay?. (5)

All three equations are necessary to define V,,, for example, the zero locus
of just (3), (4) is Vo U {z2 = yo = 0}. As b — 0T, the affine variety
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Vo approaches the totally real plane {y; = y2 = 0}, and the two limiting
cases a = 1 were described in the previous two Examples. At the double
point, the tangent cone is the union of two totally real planes, {y; = yo =
0} U {bz1 + ay1 = bz + ays = 0}. Totally real spheres with a single point
of self-intersection in C? have also been considered in [Weinstein] and [BF].
Pairs of totally real subspaces (M, N) which meet only at the origin have
been considered by D. Burns and [Weinstock]. The pair appearing in this
Example is N = R?, with coordinates z1, z2, and M = (A + i)R?, where

—a
a=(F ).
0 -3

A Clinear transformation of C? which fixes N = R? has a matrix repre-
sentation S with real entries, and transforms A into SAS~'; the quantity
—a/b = 3$Tr(A) is clearly a similarity invariant.

As in Example 4.5, there is complex affine neighborhood in which part
of the image is a real quadric in a real hyperplane. Setting Z; = 1 gives the
parametrization

[l:ztiy] — [*4+y?—a—ib:x:y]
> +y*—a —b y
X,v,7) = (ZT¥ 90,
( ? ? ) ( T ? T ? x)
The implicit equation in (X,Y, 7) is
bXY —aY?2 + 0?22 +0? =0,
which is a two-sheeted hyperboloid for b > 0.

To summarize, the r-equivalence class of a coefficient matrix P can be
recognized by inspecting the image of the map PosoA : CP' — CP2. The
r-equivalence classes are represented by the following cases, starting with
the two rank 1 cases.

e PosoA is the stereographic projection map, where the kernel of P is
spanned by a rank one matrix, and P o s o A is defined for all points
in CP'.

e The image is a totally real affine plane, where the kernel of P is
spanned by a rank one matrix, and P o s o A is not defined at one
of the points of CP!.

e PosoA is singular at one point, and is totally real away from this
point.
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e CP' is embedded in CP2. There are two elliptic complex tangents,
with the same Bishop invariant v = % v can attain any value in
the interval (0, 1). (The v = 0 case is the stereographic sphere.)

e The image is a disc contained in a totally real plane, and Po so A is
two-to-one, except along a singular curve.

e Poso A is two-to-one, and its image is a real projective plane.

e The image is a totally real immersed sphere with one point of self-
intersection. A parameter —a/b, determined by the tangent planes at
that point, can attain any real value and classifies such maps up to
r-equivalence.

This Section concludes with two remarks on Theorem 4.3.

It is interesting that in the two cases with continuous parameters, in-
equivalent immersions can be easily distinguished by finding holomorphic
invariants in the coefficients of the defining functions of the images near
the exceptional points. In higher codimensions, 2m < n, the situation will
be different, since it was observed in [C3] that the nondegenerate complex
tangents are “stable,” with no continuous invariants under formal biholo-
morphic transformations.

The 0 < 6 < 1 matrices of the Theorem are congruent to symmetric

matrices:

2
1 i <0 1) 1 —i% _<ﬂ) 1
14 1+8 . 1 X 145

<Zl W) 5o (‘Z = 1

=it 1

o 1 1 )’

with 0 < ¢ < 1. This shows that every r-equivalence class of 3 X 4 matrices
has a representative P so that k(ker(P)) is spanned by a complex symmetric
matrix. It also shows that the classification of 2 x 2 pencils in Theorem 4.3
gives exactly the same results as a classification of [Waterhouse] of complex
quadratic forms up to real congruence.

ISy

@

5 CP? in CP?
By the codimension calculation from Example 3.2, the next pair (m,n)

where complex tangents are expected to be isolated is m = 2, n = 5. In
contrast to Theorem 4.1, there are infinitely many c-equivalence classes;
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some naive counting will suggest that the dimension of the parameter space
exceeds the dimension of the group acting on it. By Theorem 2.3, the c-
equivalence problem is equivalent to classifying three-dimensional subspaces
K of M(3,C), under the action K — Bsy3K AL ;. The r-equivalence prob-
lem, or the classification of K up to the congruence of Theorem 2.8, seems
to be even more difficult.

Rather than attempt higher-dimensional analogues of Theorems 4.1 or
4.3, this final Section will consider just a few Examples, and scrutinize only
the following simple one in detail.

Example 5.1. Consider the following coefficient matrix:

1 000 142 0 0 0 3
0100 O OO0 -10
p_ 0010 O O0O0 0 O
0001 O O0O0 O O
0000 O 10 0 O
o000 O O1 1 0

6x9

It is intentionally rather sparse, to simplify some calculations, and the non-
zero entries play specific roles, as follows. The top row is chosen so that
PosoA will have an image contained in the Zy # 0 neighborhood. Deleting
the top row and the first, middle, and last columns leaves a 5 X 6 submatrix,
in row-echelon form so that P has rank 6 and ker(P) is a 3-dimensional
subspace of C?. Its last column (the eighth of nine in P) is chosen so that
k(ker(P)), which is the following subspace of M (3, C):

(1 + i)cl + ng 0 —C2
{ Cco —C1 Cco 1 C1,C2,C3 € (C},
0 0 —C3

contains no matrices of rank 1, and so P o s is defined for all (z,w) €
CP? x CP2.

The goal of this Example is to show that this choice of P defines an
immersion of CP? in an affine neighborhood of CP®, which has exactly
three complex tangents. The computations were initially carried out using
MAPLE software ([WMI]), but the following paragraphs will outline the main
steps in human-readable format. This immersion will be rather peculiar in
that it is not a one-to-one mapping, which is unexpected, considering the
high codimension.
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The composition P o so A : CP2 — CP® is defined for all of CP?. By
inspection of the parametric map taking [zp : 21 : 29] to:

[2020 + (1 + Z.)Zlfl + 12929 : (Z() — 22)21 12029 1 2120 : 2122 ¢ 22(20 + 21)],

the image of P o s o A does not meet the Zy = 0 hyperplane. (This is as in
Examples 4.5 and 4.9, where the first component is not real-valued, but it
doesn’t vanish for any (z, 21, 2) # 0.)

The singular locus of Pos is a complex algebraic subvariety of the domain
CP? x CP2. In order to find its intersection with the image of A, it will be
enough to check the Jacobian matrix of Po s, considered as a map C* — C°
when it is restricted to three of the nine affine charts in the domain, and
the Zy # 0 chart in the target. For example, the restriction of P o s to the
zgp = 1, wp = 1 neighborhood defines a map

Py (z,w) Ps(z,w)
Py(z,w)”" " Py(z,w)

(ZlaZQawlan) — (

~

(6)

The locus where the rank drops is the common zero locus of five 4 x 4 de-
terminants, which will be inhomogeneous rational functions in 2y, zo, w1, wo.
Since the image of A does not meet the zero locus of the denominators (which
are powers of P), it is enough to consider the numerators of these rational
functions, and re-introduce zy and wy to get five bihomogeneous polynomials
which define a subset of {(z,w) € CP? xCP? : zy # 0, wy # 0, Py(z,w) # 0}.
Repeating this procedure for the other charts in the domain will give other
subsets of CP? x CP?, but with significant overlaps, and which satisfy the
same bihomogeneous polynomial equations. According to MAPLE, these
polynomials are:

z1w2(22w2 + (’L — 1)21@00 + (’L — 1)21@01) (7
leQ(ZQwQ — ZoWs + (Z — 1)2111)1) (8
21 (zowqwe + izyu% + (i — 1) zywy (wy + wy) — izpwowy — iwgzo) (

wo 23wy — zozows + izozawg + (i — 1)21 22wy — izgwo — izgwl) (10

ZU((i—l)lel - izgwo)(wo +w1) + 22w0(z2w2 — 2Zpwo + ’iZ[)’LU()). (]_1

The real diagonal image of A, [wg : wy : we] = [Zo : Z1 : Z2], meets this
locus in a real algebraic variety, which (again, according to MAPLE) consists
of exactly three points: z; = A([1 : 0 : 1]), zo = A([1l : —1 : 0]), and
x3=A([1:7:1—1]).

Since getting an exact count of the number of complex jump points is
the important part of this Example, and since computations such as finding
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all the solutions of a system of polynomial equations should be checked
by hand whenever possible, the following calculations will verify MAPLE’s
claim. First, it is easy to check that these three points are in the common
zero locus of equations (7)—(11), and are indeed elements of the singular
locus of P o s.

Second, suppose there is some [z : 2z : 23] € CP? with z = 0 and
21 # 0, 23 # 0, whose image under A satisfies equation (7), so that

2122(2252 + (Z — 1)2151) =0.

However, none of the three factors vanishes, so there are no such points in
the singular locus.

The next case is where z; = 0. Any point A([zg : 0 : 29]) satisfies (7)—(9),
and (10) then implies

29 (Z%?Q — Z0%2%9 + 1202220 — ZZ%EO)
= 22(22 — Zo)(ZQEQ + Z.Z()E()) =0,
where the last factor is nonzero, and the only solutions are zy = z2, which
gives the point 1, or 21 = 25 = 0, in which case (11) would imply 2z is also

Z€ro.
The next case is z9 = 0, 21 # 0, so that (11) becomes

ZU(EO + 21)((2 — 1)2121 — 'L.Z()f[)) =0.

As in the previous case, the last factor is nonzero, one of the solutions is
21 = —2zp, which gives x9, and zp = 29 = 0 in (9) would imply z; = 0.
Finally, the remaining case is that all three projective coordinates are
nonzero, so that zy can be assumed to be 1, and subtracting (8) from (7)
implies Zo + (i — 1)z; = 0. Plugging zp = 1 and 29 = (1 +14)Zz; into (8) gives

zl(l — z)zl(—(l - Z)Zl + (1 + 2)51(1 - Z)Zl + (’L - 1)2151) =0,

where the only nonzero solution is z; = %, which gives the point 3.
The images of the three points, z1, 2, 3, under P o s are

1—1 1—1
X{=1[1:0: :0:0:
1=[1:0 5 0:0 5 ,
17— 2 7 — 2
Xy =11: :0: :0:0
2—31 5—1 3+2t 1+5: —6-—41
X3=]1: : : : : ,
13 13 13 13 13
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which are the candidates for complex jump points in the image of CP?.
(They are also candidates for differential-topological singularities, as in Ex-
ample 4.5.)

The real tangent planes at these points are found by considering the
restriction of Poso A to the zp = 1 affine neighborhood, so that Poso A :
R* — R0 is given by

Py

(21,22) = (Re(=), Im(

P P
o Im(22
Py

P, 7))

At each point z in the domain, there is a real 10 x 4 Jacobian matrix D, of
derivatives, whose image is a four-dimensional subspace T}, of R?.

It turns out (according to calculations left to MAPLE) that at each point
1, T2, T3, the real Jacobian matrix has full rank. This is enough to prove
that P o so A is an immersion (although it could also be checked directly
that the real Jacobian has full rank at every point).

In C°, the scalar multiplication map @ + 4 - ¥ is real-linear, and induces
a complex structure operator J on R'?, which is a 10 x 10 block matrix with

five < (1) _01 > blocks on the diagonal. The concatenation of D, with J-D,

results in a 10 x 8 matrix, which maps R® to R!? so that the image subspace
is the sum T, + JT,. At the totally real points z, where T, and JT, meet
only at the origin, T, + JT, is 8-dimensional. At the three points z1, x2, x3,
it can be calculated that the 10 x 8 matrix has rank 6, which proves that
T1, T2, x3 are not “exceptionally exceptional,” that is, none of the tangent
spaces is a complex 2-plane, but instead each contains exactly one complex
line. In the notation of Section 3, Ny = {z1, z2, 23}, and Ny = Q.

To illustrate the idea, the procedure for finding T, will be recorded here
only for z = x7.

O 0 0 0
O 0 0 0
0 0 -5 —3
0 0 —35 —3
1 1
L1 g
=] 2 7
55 000
O O
[ S T
2 2 2 2
IS S
2 2 2 2 10x4
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has rank 4, but [Dg,,J - Dy Jioxs has rank 6. A basis for its kernel is
{(0,~1,1,-1,1,0,0,0)",(1,0,0,0,0,1,—1,1)T}, and the following equation
shows that the image of D,, contains a J-invariant subspace:

0 0
0 0
0 0
1 0 0 0
0 —1 1 -1
Daro| g | =7 Pur | [ = 20 [ =7 2
0 1 1 _i
? it

1
2 1
2 2
iy 1
2 2

The span of (0,0,0,0, %,—%,%,—%,%,—%)T and its image under J is the
complex line {Z) = Zy = Z3 — Z, = Z3 — Z5 = 0}. The same calculations
for x5 and x5 yield different complex lines tangent to CP? in C°.

It remains to check that Poso A is one-to-one except for a triple point.
The following calculation is similar to that of [Whitney]. First, consider
those points in the image such that all three domain coordinates, zp, 21, 2o,

are nonzero, so that P o so A restricts to a map:
Py (m—-DZ 2 Zo + 71
— i —zy:1:

21 21 21 21

]

[20:21: 1] = [

This map is clearly one-to-one from {(zq,21) € C? : 2y # 0,2 # 0} to C°.
Points on the line {[0 : z; : 1]} are mapped to

[(144d)z121+4:—21:0:0: 21 : 1],
and points on the line {[zo : 0 : 1]} are mapped to
[20Z0 +7:0:29:0:0: Z;

both of these restrictions are also one-to-one, with images disjoint from the
previous image (and each other, except at their point of intersection in the
domain, [0 : 0 : 1]). Another line in the domain is {[1 : z; : 0]}, whose points
are mapped to

14+ (1442121 :21:0:21:0:0].

This restriction is also one-to-one, but its image meets the previous images
when z; = 0. The only remaining point in the domain is [0 : 1 : 0], whose
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image is [1: 0:0:0:0: 0], which is the same as the image of [1 : 0 : 0] and
[0:0:1]. In fact, P oso A maps the complex projective lines {[zo : 0 : 22|}
and {[zp : z1 : 0]} in the domain into two-dimensional complex subspaces
in the range, falling into the Example 4.9 case of the classification from
Theorem 4.3.

Example 5.2. Consider the following family of coefficient matrices, as a
perturbation of the previous Example by varying two of the entries:

1 000 14+2 0 0 0
0100 ¢ 00 =10
p_ 0010 O 0O O O
o001 0 00 0 O
0000 O 10 0 O
o000 0 01 1 ¢

The ¢ = 0 case is the previous Example, where there are three complex
tangents, and a single triple point. The two changed entries contribute z;w;
and zows terms to the numerators of the map (6). It is expected that for ¢
close to zero, the perturbed immersion will still have exactly three complex
tangents. For example, at t = —1/2, the diagonal A(CP?) intersects the
singular set of Pos at 1 = A([1 : 0 : 1]), z2 = A([1 : —1 : 0]), and
x5 = A([4 : —i : 1]). Also, the triple point breaks up into two double
points: both domain points [+ + (=2 £ 3/7)i : 0 : 1] are mapped to the
7+§/‘ﬁ + 7978‘/Ei : 0] and

same image under P o so A, and similarly, [1 :
[1: 772{‘? + =2 47; . 0] have the same image.

At ¢ = —1, there are five complex tangents (and again two double points).
Topologically, the two new jump points forming in this homotopy are ex-
pected to have opposite orientation indices, so that the index sum of [Dy]
and [Cy] is still 3. It would be interesting to understand the local geometry
of this “pair creation.” Two concepts which might be useful analogies are
the homotopical construction of [F] for surfaces in C?> with complex tan-
gents, and the cancellation of Whitney cross-cap singularities, described as
a “confluence of umbrellas” in [A].

Example 5.3. Consider the following coefficient matrix, as a perturbation
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of the t = —1/2 case of the previous Example.

1 000 1+4 00 0 i
-1100 —3 00 -1 §
p_| 0010 0 00 0 0
0001 0 00 0 O
0000 0 10 0 O0
-2 000 0 01 1 —3

The new entries contribute more z;z; terms to the quadratic polynomials in
the parametrization. The composite map (P o so A)([zp : 21 : 22]) is:

1

[2020 + (L +i)z121 + 42920 : (20 — 371~ 29)Z1 — 2020 + §z222
2022
2120
2122
I 3
zo(Zo + 21 — 522) — Ezgzg].

This is an embedding with exactly three complex tangents. The diagonal
A(CP?) intersects the singular set of Pos at 1 = A([1:0: 3]), z5 = A([1 :
2:0]), and 3 = A([9+28i : —18—63: : 54—30i]). The new coefficients were
chosen so these points would have Gaussian integer coordinates, since the
rank calculations, as in Example 5.1, require exact arithmetic. The check
that it is one-to-one is also as in Example 5.1.

While embeddings with an odd number of complex tangents are the
generic case, images of quadratic maps CP? — CP® can exhibit some un-
usual behavior. The first two Examples showed there can be isolated double
or triple points. The next two will demonstrate some different unstable
geometric properties, as well as algebraic degeneracy in the rank of ker P.
The diversity of CR singular and topologically singular phenomena perhaps
speaks to the complexity of the problem of classifying subspaces of M(d, C)
up to congruence.

Example 5.4. The first five rows of the matrix:

1 000 1 0001
0000 O 10O00O0
p_ 0000 O OT1TTO0OTGO
0100 0 O0OO0OO
1000 -1000O0
0000 O OOT1OQO0



are the coefficients of Whitney’s embedding of CP? in C*, from Example
2.5. Adding the last row makes a rank 6 matrix, and defines a map PosoA :
CP? — CP® taking [z : 21 : 20] to:

[ZUEU + 2121 + 2929 2129 : 2920 : 2921 : 2020 — 2121 : 2251].
The kernel’s image under k is the set

C1 C3 0
{l] 0 & 0 : ey, 09,c3 € Ch
C9 0 —261

The matrices in this subspace with rank < 1 form exactly two lines, where
cit = co = 0,0rcg =cg =0. So, Po s is not defined at the points
2zo=(0:1:0,[1:0:0])orzy =([1:0:0],[0:0:1]). Theimage of PosoA
is contained in the the 7-dimensional real subspace {Zy = Z4, Z5 = Z;} of
the Zy = 1 affine neighborhood. (However, the image is not contained in
any complex hyperplane.) P o so A is a one-to-one immersion, since it is
a smooth graph over Whitney’s example. The real diagonal image of A
meets the singular locus of P o s at exactly three points, zo = A([1: 0 : 0]),
z3 =A([0:1:0]), and 4 = A([0: 0: 1]). Their images under P o s are

Xo=[1:0:0:0:1:0],

X3=[1:0:0:0:—-1:0],
X4=[1:0:0:0:0:0].

At X3, the real tangent 4-plane is {Zy = Z, = 0, Z5 = Z,}, which contains
the Zz-axis. At X4, the tangent 4-plane is {Z3 = Z4 = 0, Z5 = Z;}, which
contains the Zs-axis. The unusual point is X5, where the tangent space
is the complex 2-plane {Z; = Z; = Zs = 0}, which, by the codimension
formula for complex tangents, is a topologically unstable phenomenon; this
submanifold is not in general position.

It is worth pointing out that for the map from Example 5.3, the image
in C is not contained in any real hyperplane (it is easy to pick one point in
the image to translate to the origin, and then pick 10 more points with R-
independent coordinates), so the embedding from Example 5.4 is unusually
flat.
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Example 5.5. The following coefficient matrix has the same top row as the
previous Example, and contains the identity matrix as a 6 x 6 submatrix.

100010001
01 000O0O0OTO0ODQ O
p_ 001 0O0O0O0O0DQ 0
1000100000
000 0O0O0OT1QO0OQO0
000 0O0O0OO0OT10Q0
The kernel’s image under k is the set
—C3 — C9 0 0
{ 0 co 0 1cC1,C2,C3 E(C}

0 C1 C3

The matrices in this subspace with rank < 1 form exactly one line, where
co = c¢3 = 0. The composition P o s o A defines the parametric map

[Zo A 22] — [2020 + 2121 + Zo20 1 Z120 1 Z220 : Zox1 - 2022 - 2122].

The image is contained in the 6-dimensional real subspace {Z; = Z3, 2 =
Zy} of the Zy = 1 affine neighborhood. It is known (see [Davis]) that CP?
cannot be immersed in R®, so this map will have a non-empty singular locus,
which generically, for smooth maps from a 4-manifold to RS, is expected to
be one-dimensional. In this case, the domain CP? contains two spheres
which are mapped onto flat discs, as in Example 4.7:

[20 : 0 22] = [2020 + 2222 : 0 2922 : 02 292 : 0],
[20 121 : 0] — [2020 + 2121 : 2021 : 0: 2129 : 0 : 0].

Finally, we recall a construction by G. Mannoury (circa 1898), of an
embedding of CP? ([M], [vdW]).

Example 5.6. The map
[2020 + 2121 + 2229 \/52050 : \/52121 : \/52222
2129 + 2921 : i(2122 — 2221)
2020 + 2022 : i(ZQEO — 2,’022)

2021 + 2120 : 'L.(Z()fl — Zlfg)]

has ten components, so it could be defined as Poso A : CP?2 — CP?, using
a 10 x 9 coefficient matrix P, composed with the map so A : CP? — CP%.

32



In this case, P is not a projection, but a linear inclusion, and it would be
easy to construct a 9 x 10 matrix @) so that @) o P is the identity. So, all the
previous Examples in this Section are projections of this embedding.

The image is contained in the intersection of the {Zy = 1} affine neigh-
borhood in CP? and the real projective space RP?, since all the components
are real. Restricting the target to the affine neighborhood {Xg = 1} in RP?
gives Mannoury’s embedding of CP? in RY, with image contained in the
intersection of the real hyperplane X; + X + X3 = v/2 and the hypersphere
with center 0 and radius V2.

Some of the calculations omitted from this Section, and some of the
unpublished papers in the references, are available from the author’s web
site, www.ipfw.edu/math/Coffman/.
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