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ABSTRACT
The use of side information by an attacker can help a worm
speed up the propagation. This philosophy has been the ba-
sis for advanced worm scanning mechanisms such as hitlist
scanning, routable scanning, and importance scanning. Some
of these scanning methods use information on vulnerable
hosts. Such information, however, may not be easy to col-
lect before a worm is released. Questions then arise whether
and how a worm can self-learn and use such information
while propagating, and how virulent the resulting worm may
be. In this paper, we design a self-learning worm using im-
portance scanning. An optimal yet practical importance-
scanning strategy is derived based on a new metric. A self-
learning worm is demonstrated to have the ability to accu-
rately estimate the underlying vulnerable-host distribution
if a sufficient number of infected hosts are observed. Exper-
imental results based on parameters chosen from Code Red
show that after accurately estimating the distribution of vul-
nerable hosts, a self-learning worm can spread much faster
than a random-scanning worm, a permutation-scanning worm,
and a Class A routing worm. Some guidelines for detecting
and defending against such self-learning worms are also dis-
cussed.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: [Invasive software]

General Terms
Security

Keywords
worm propagation, self-learning worm, modeling, importance
scanning

1. INTRODUCTION
A worm attacks vulnerable computer systems and em-

ploys self-propagating method to flood the Internet rapidly.
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Worms, such as Code Red [10], Slammer [9], and Witty [17],
have infected hundreds of thousands of hosts and become a
significant threat to network security and management. It is
therefore of great importance for defenders to characterize
the spread of worms that employ distinct scanning methods
and to study countermeasures accordingly.

Different scanning methods have been employed by pre-
vious worms. For instance, Morris worm used topological
scanning that relies on the information contained in the vic-
tim host to find new targets. Code Red v2 and Slammer
worms employed random scanning that selects targets ran-
domly. Code Red II and Nimda worms exercised localized
scanning that preferentially searches for targets on the “lo-
cal” address space.

Some advanced scanning mechanisms have been devel-
oped based on such a philosophy: The use of side infor-
mation by an attacker can help a worm speed up the propa-
gation. For example, hitlist scanning collects a list of vulner-
able hosts before the worm is released [20]. Flash worm is an
extreme case of hitlist-scanning worms, where IP addresses
of all vulnerable hosts are known in advance [19]. Routable
scanning exploits the information provided by BGP routing
tables [26, 22]. Importance scanning takes advantage of the
knowledge of vulnerable-host group distribution, assuming
that this distribution is either available or obtainable [2].

In the Internet, however, it may not be easy for attack-
ers to collect information on vulnerable hosts. For example,
Windows SQL database servers do not advertise their ad-
dresses [9, 26]. It is therefore difficult for Slammer to ob-
tain a list of vulnerable hosts or an underlying vulnerable-
host distribution before the worm is released. Nevertheless,
future worms can become more intelligent and potentially
learn a certain knowledge about, e.g. the vulnerable-host
distribution, while propagating. In this work, we focus on
self-learning worms and intend to answer the following ques-
tions:

• How can a worm self-learn about a vulnerable-host
distribution and make use of such information while
propagating?

• How fast can a self-learning worm spread?

First, we derive an optimal static importance scanning
method assuming that a vulnerable-host group distribution
is given. The dynamic importance scanning proposed in [2]
is optimal in terms of worm propagation speed under the
same assumption. But such an optimal solution is not real-
istic, since it requires a lot of information exchange among
infected hosts. The proposed static importance scanning



is practical as it constrains the information exchange, and
optimal as it is derived based on a new metric that charac-
terizes the effectiveness of scanning strategies. This metric
reflects the average number of worm scans required until
the first scan hits a randomly-chosen vulnerable host. We
then show the propagation characteristics of different static
importance-scanning methods through an extended Analyt-
ical Active Worm Propagation (AAWP) model [3, 2].

Next, we design a self-learning worm without the knowl-
edge of vulnerable-host group distribution before spreading.
Such worm intends to use importance scanning but avoids
information exchange among infected hosts. A key capabil-
ity of this worm is to learn an underlying vulnerable-host
group distribution. We show that the worm can accurately
estimate the group distribution through a simple proportion
estimator if a sufficient number of IP addresses of infected
hosts can be collected. We consider the group distribution of
web servers as an example of vulnerable-host distribution in
/8 subnets. We then show that a self-learning worm based
on parameters chosen from real measurements can spread
far faster than a random-scanning worm, a permutation-
scanning worm, and a Class A routing worm after estimating
the group distribution of vulnerable hosts.

Finally, we provide a few guidelines for detecting and de-
fending against the self-learning worms: (1) A new appli-
cation should be uniformly deployed in the future Internet
from the view of game theory between a self-learning worm
and a defender. (2) Defenders from different domains should
share information with each other and cooperate to build
up distributed worm detection systems. (3) An information
collection and process center of a self-learning worm system,
shown in this paper, needs to be detected and disabled early.

The remainder of this paper is structured as follows. In
Section 2, we introduce the concept of importance scanning
and the notations used in this paper. In Section 3, we char-
acterize the static importance-scanning strategies through
theoretical analysis and experiments. We then design a
self-learning worm in detail and compare it with a random-
scanning worm, a permutation-scanning worm, and a Class
A routing worm in Section 4. We further discuss some guide-
lines for detecting and defending against such self-learning
worms in Section 5. We conclude this paper in Section 6
with a brief summary and an outline of future work.

2. IMPORTANCE SCANNING
Importance scanning is inspired by importance sampling

in statistics [2]. Importance sampling is used to reduce the
sample size for accurately estimating the probability of rare
events [18, 7, 5]. Xing et al. employed the principle of im-
portance sampling to measure the size and the growth of
the Internet [24]. Chen et al. designed a fast spreading
worm based on the spirit of importance sampling [2]. Both
works regard probing/scanning as sampling. That is, prob-
ing a target to find an information server or a vulnerable
host is equivalent to obtaining a sample in IP address space.
If servers or vulnerable hosts are distributed non-uniformly,
importance sampling can sample the IP address space ac-
cording to their distributions. This enables importance sam-
pling to reduce the number of samples (probes/scans) needed
for accurately estimating the number of servers or quickly
attacking a large number of vulnerable hosts.

When worm scanning methods are considered, random
scanning is equivalent to a Monte Carlo method, which sam-
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Figure 1: Illustration of importance scanning.

ples randomly-chosen targets in IP address space. In con-
trast, importance scanning samples targets according to an
underlying group distribution of vulnerable hosts [2]. The
division of groups can follow different criteria, such as Do-
main Name System (DNS) Top-Level Domains, countries,
Autonomous Systems, IP prefixes in Classless Inter-Domain
Routing (CIDR), first byte of IP addresses (/8 subnets), or
first two bytes of IP addresses (/16 subnets). A key observa-
tion is that the vulnerable-host distributions in these groups
are highly non-uniform [10, 9, 17, 14, 2], which can be ex-
ploited by importance-scanning strategy. Importance scan-
ning concentrates on scanning groups that are more likely
for worms to find vulnerable hosts.

Specifically, we assume that the Internet is composed of
m groups, as illustrated in Figure 1. Let N denote the to-
tal number of vulnerable hosts in the Internet. Let Ni and
Ωi (i = 1, 2, · · · , m) denote the number of vulnerable hosts
and the size of address space in group i, respectively. Thus,Pm

i=1 Ni = N and
Pm

i=1 Ωi = 232. We define group distri-
bution of vulnerable hosts, pg(i) (i = 1, 2, · · · , m), as the
ratio between the number of vulnerable hosts in group i and
the total number of vulnerable hosts, i.e., pg(i) = Ni

N
. We

define group scanning distribution, p∗
g(i) (i = 1, 2, · · · , m),

as the probability that a worm scan hits group i. Thus,Pm
i=1 pg(i) = 1 and

Pm
i=1 p∗

g(i) = 1. Table 1 shows the
notations used throughout this paper.

The choice of p∗
g(i)’s is essential to the effectiveness of

importance scanning. There are two types of importance
scanning: dynamic importance scanning if p∗

g(i)’s vary with
time, and static importance scanning if p∗

g(i)’s are fixed at
all time. In [2], the optimal dynamic importance scanning is
derived, assuming that the group distribution and the total
number of vulnerable hosts are known in advance. At each
time step, this optimal solution forces all infected hosts to
concentrate on scanning the group where it is most likely for
the worm to find an uninfected vulnerable host. This strat-
egy, however, is not realistic, since it requires each infected
host to know the number of uninfected vulnerable hosts in
each group at every time step, and thus leads to a lot of in-
formation exchange among infected hosts. In this paper, we
focus on static importance-scanning strategies, while using
the optimal dynamic importance-scanning strategy as a per-



Table 1: Notations used throughout this paper.
Notation Explanation

N Total number of vulnerable hosts
m Number of groups in the Internet
Ni Number of vulnerable hosts in group i
Ωi Size of address space in group i
pg(i) Group distribution: Percentage of vulnerable hosts in group i
p∗

g(i) Group scanning distribution: Probability of a worm scan hitting group i

formance upper-bound for comparison. Here “performance”
refers to the propagation speed of worms. If a worm spreads
faster, it has better performance.

3. STATIC IMPORTANCE SCANNING
WITH GROUP DISTRIBUTION

In this section, we assume that the group distribution
is given. We first derive the optimal static importance-
scanning strategy. We then extend the AAWP model [2]
to model the spread of static importance-scanning worms.
Finally, we use a web-server distribution in /8 subnets as
an example of vulnerable-host group distribution to com-
pare the propagation speed of static importance-scanning
strategies.

3.1 Optimal Static Importance Scanning
When a worm scan hits group i (i ∈ {1, 2, · · · , m}), Ωi

hosts in this group are targeted by that scan with the same
likelihood. That is, when considering a vulnerable host in
group i, it has a probability of 1

Ωi
to be hit by a worm scan

given that the scan hits the group. Thus, a vulnerable host
in group i is hit by an importance-scanning worm scan with
probability

ph(i) = p∗
g(i) · 1

Ωi
. (1)

Since the events of a vulnerable host being hit are assumed
to be independent in static importance scanning, the num-
ber of scans required until the first scan hits an appointed
vulnerable host in group i, denoted by Xi, follows a geomet-
ric distribution [15]

P (Xi = j) = ph(i)(1 − ph(i))j−1, j = 1, 2, · · · . (2)

Then, the expected number of scans needed until this vul-
nerable host is hit is

E[Xi] = (ph(i))−1 =
Ωi

p∗
g(i)

. (3)

Therefore, if we randomly choose a vulnerable host in the
Internet, the average number of scans required until the first
scan hits this host, denoted by Y , is

Y =
1

N

mX
i=1

Npg(i)
Ωi

p∗
g(i)

=

mX
i=1

Ωipg(i)

p∗
g(i)

, (4)

where Npg(i) is Ni, the number of vulnerable hosts in group
i. Intuitively, a good metric to measure the effectiveness of
scanning strategies is the average number of scans required
for hitting all vulnerable hosts divided by the number of
vulnerable hosts. An expression of this metric, however, is

complex and difficult to obtain. Instead, Y gives an alter-
native metric to reflect the effectiveness of scanning strate-
gies. A better static importance-scanning strategy leads to
a smaller Y . Thus, the goal of the static importance scan-
ning is to minimize Y . The optimal solution can be found
by Lagrangian optimization of Y as shown in the following
theorem.

Theorem 1. Among all possible static importance-scanning
strategies, the group scanning distribution p̃∗

g(i) is the strat-
egy that minimize Y subject to

Pm
i=1 p∗

g(i) = 1, where

p̃∗
g(i) =

p
Ωipg(i)Pm

k=1

p
Ωkpg(k)

. (5)

Proof: The optimal static importance-scanning strategy
can be found by minimizing Y . Let the Lagrangian objective
function be

J =
mX

i=1

Ωipg(i)

p∗
g(i)

+ λ

 
mX

i=1

p∗
g(i) − 1

!
. (6)

For each group i, differentiating with respect to p∗
g(i) and

setting the result equal to zero yield p̃∗
g(i) =

q
Ωipg(i)

λ
. The

constraint
Pm

i=1 p̃∗
g(i) = 1 gives λ =

“Pm
i=1

p
Ωipg(i)

”2

,

which leads to Equation (5). Since ∇2J
`
p∗

g(i)
´ ≥ 0, p̃∗

g(i) is
the optimal static importance-scanning strategy that mini-
mize Y .

Putting p̃∗
g(i) into Equation (4), we obtain

Ỹmin =

 
mX

i=1

p
Ωipg(i)

!2

≤
 

mX
i=1

Ωi

! 
mX

i=1

pg(i)

!
= 232.

(7)
The above inequality is derived by Cauchy-Schwarz Inequal-

ity and holds when
pg(1)

Ω1
=

pg(2)

Ω2
= · · · =

pg(m)

Ωm
= 1

232 ,
i.e., the vulnerable hosts are uniformly distributed in the

Internet. When Ω1 = Ω2 = · · · = Ωm = 232

m
, p̃∗

g(i) =√
pg(i)

Pm
k=1

√
pg(k)

and Ỹmin =
232×

“Pm
i=1

√
pg(i)

”2

m
.

3.2 Worm Propagation Model for Static
Importance-Scanning Worms

To compare the performance of different static importance-
scanning strategies, we need to model the spread dynamics
of static importance-scanning worms. The AAWP model,
as applied in [3, 14, 2], is extended here for our purpose.

Let It denote the total number of infected nodes at time t
(t ≥ 0). Then, during the time period [t, t+1) the number of
scans hitting group i is sItp

∗
g(i), where s is the scanning rate



of the worm. For group i, since each address is scanned with
the same likelihood of 1

Ωi
, the expected number of infected

hosts at time t + 1 can be derived as:

It+1,i = It,i + (Ni − It,i)

»
1 − (1 − 1

Ωi
)sItp∗

g(i)

–
, (8)

where i = 1, 2, · · · , m; I0,i is the number of initially-infected
hosts in group i; and It =

Pm
i=1 It,i.

For static importance-scanning strategies, assuming that

Ω1 = Ω2 = · · · = Ωm = 232

m
, we can relate the group scan-

ning distributions p∗
g(i) with the group distributions pg(i) in

the following formula:

p∗
g(i) =

(pg(i))
nPm

k=1 (pg(k))n ∝ (pg(i))
n . (9)

When n = 1
2
, p∗

g(i) is the optimal static importance-scanning
strategy that minimizes Y .

3.3 Comparison of Static Importance-Scanning
Strategies

We use the web-server (port 80) distribution as an exam-
ple of vulnerable-host group distribution to compare the per-
formance of static importance-scanning strategies. To esti-
mate the distribution of web servers, we exploited a random
Uniform Resource Locator (URL) generator from UROULETTE
(http://www.uroulette.com/) to collect 13,866 IP addresses
of web servers on January 24, 2005. An empirical group dis-
tribution based on the first byte of IP addresses (/8 subnets)
is then formed as

pe(i) =
number of addresses with the first byte equal to i

total number of collected addresses
,

(10)
where i = 0, 1, · · · , 255. The results are plotted in Figure
2(a), showing that the web-server distribution is far from
being uniform. We further plot the Complementary Cumu-
lative Distribution Function (CCDF) of the web-server dis-
tribution in /16 subnets in log-log scales in Figure 2(b) for
collected data. CCDF is defined as the fraction of the /16
subnets with the number of vulnerable hosts greater than d.
We find that a lognormal distribution with mean 0.15 and
standard deviation 1.25 closely fits these measurement data.
This indicates that the distribution of web servers nearly
follows a power law distribution. Similar observations are
shown in [14]. Since the empirical group distribution pe(i)
gives the relative distribution of web servers as a function of
the first byte value of IP addresses, we assume pg(i) = pe(i)
for our experiments in this paper. This assumption is also
applied in [24, 2].

We use Code Red v2 as a worm example, which has a vul-
nerable population N=360,000 and a scanning rate s=358
per minute [10, 25]. We also assume a hitlist of 10 (i.e., I0 =
10). Equations (8) and (9) are used to model the spread of
worms that employ the static importance scanning. Figure 3
shows the propagation speed of different static importance-
scanning strategies (n = 1

3
, 1

2
, 1, 2) as well as the optimal

dynamic importance-scanning (IS) method [2]. The experi-
ments stop when 99% vulnerable hosts are infected. As ex-
pected, when n = 1

2
, static IS infects 99% vulnerable hosts

in the shortest time duration among all static strategies.
One interesting observation is that if a static strategy (such
as n = 2) spreads faster at the early stage, it will propa-
gate slower at the late stage; or vise versa (such as n = 1

3
).
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Figure 2: Uneven distribution of web servers.

This is because a static IS uses the same group scanning
distribution all the time. Larger n leads to that an IS worm
preferentially scans the groups containing more vulnerable
hosts at the early stage, but unfavorably probes the groups
having more left vulnerable hosts at the late stage. There-
fore, attackers may choose a corresponding static IS strategy
based on the purpose of attacks, e.g. infecting some amount
of hosts as quickly as possible.

4. A SELF-LEARNING WORM WITHOUT
GROUP DISTRIBUTION

We now assume that the knowledge of the group distri-
bution is not available before a worm starts to spread. We
then focus on a self-learning worm that learns the distribu-
tion while propagating.
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4.1 A Self-Learning Worm
For practicality, we assume that learning takes place using

as less information exchange among hosts as possible. Such a
constructed worm system is shown in Figure 4. A host with
a high Internet bandwidth capacity, called worm server, is
responsible for collecting and processing information about
the IP addresses of infected hosts. An infected host is called
worm client and may communicate with the worm server,
but not with other infected hosts. If the communication
uses Internet Relay Chat (IRC), this worm system forms a
Botnet [4, 13].

The propagation process of this self-learning worm can be
divided into two stages:

• Learning stage: Each infected host (worm client)
performs random scanning or routable scanning [26,
22]. Once a vulnerable host is infected and becomes
a new worm client, it reports its IP address to the
worm server. The worm server records the clients’ IP
addresses in a list. When the worm server records
a sufficient number of IP addresses, it estimates the
group distribution of the vulnerable hosts (pg(i)) based
on collected data, and sends the corresponding group
scanning distribution (p∗

g(i)) to all worm clients on the
list.

• Importance-scanning stage: Upon receiving p∗
g(i),

a worm client switches from either random scanning or
routable scanning to importance scanning using p∗

g(i).
The newly-infected hosts at this stage do not need to
communicate with the worm server, but perform im-
portance scanning directly.

This worm system is simple and effective, behaving in a
similar way to the query process in Napster peer-to-peer
system [16].

4.2 Estimating the Group Distribution
The performance of our designed self-learning worm strongly

depends on how the worm server accurately estimates the
group distribution of vulnerable hosts. Let L denote the
number of clients’ IP addresses collected on the worm server.

. . .
worm
sever

worm
client

worm
client

worm
client

pg
*(i)

IP address

Figure 4: A self-learning worm system.

Here, we attempt to answer the question: how large should
L be for accurately estimating the group distribution?

Let Li denote the number of worm clients’ IP addresses
from group i among all L addresses. Then, a simple propor-
tion estimator for group i distribution is

p̂g(i) =
Li

L
. (11)

Let Zj (j = 1, 2, · · · , L) denote the event that the jth worm
client is in group i,

Zj =

j
1, if the jth worm client is in group i;
0, otherwise.

Thus,
PL

j=1 Zj = Li. Since the worm uses random scanning
or routable scanning in the learning stage of worm propa-
gation, Zj follows a Bernoulli distribution with parameter
pg(i). Then, E[Zj ] = pg(i) and V ar[Zj ] = pg(i) (1 − pg(i)).
Thus,

E[p̂g(i)] = E

"PL
j=1 Zj

L

#
=

1

L

LX
j=1

E[Zj ] = pg(i). (12)

This means that the estimator is unbiased, which is de-
sirable. When j �= k, E[ZjZk] = P (Zj = 1, Zk = 1) =
P (Zj = 1)P (Zk = 1|Zj = 1) = Ni

N
· Ni−1

N−1
and E[Zj ]E[Zk] =

(pg(i))
2 = (Ni

N
)2. Thus,

Cov[Zj , Zk] = E[ZjZk] − E[Zj ]E[Zk] (13)

= −pg(i)
1 − pg(i)

N − 1
, (14)

which leads to

V ar[p̂g(i)] = V ar

"PL
j=1 Zj

L

#
(15)

=

PL
j=1 V ar[Zj ] + 2

P
j<k Cov[Zj , Zk]

L2
(16)

=
1

L
· N − L

N − 1
· pg(i)(1 − pg(i)). (17)

The estimation error between the actual group distribution
and the estimated group distribution is defined as in [1]

e =
mX

i=1

(p̂g(i) − pg(i))
2. (18)
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Then, the expected estimation error is

E[e] = E

"
mX

i=1

(p̂g(i) − pg(i))
2

#
(19)

=

mX
i=1

V ar[p̂g(i)] (20)

=
1

L
· N − L

N − 1
·
 

1 −
mX

i=1

p2
g(i)

!
. (21)

Since
Pm

i=1 p2
g(i)·

Pm
i=1 12 ≥ `Pm

i=1 pg(i)
´2

by Cauchy-Schwarz

Inequality,
Pm

i=1 p2
g(i) ≥ 1

m
. Therefore,

E[e] ≤ 1

L
· N − L

N − 1
· m − 1

m
≤ 1

L
. (22)

This means that we can choose the number of samples L
to achieve a desired accuracy of estimation. For example, if
L ≥ 104, we have E[e] ≤ 10−4.

To examine the tightness of the bound, we simulate the
random-scanning worm propagation, assuming that the vul-
nerable hosts follow the same group distribution as web
servers shown in Figure 2(a). When L hosts are infected,
the number of infected host in each /8 subnet is counted
and the proportion estimator is performed using Equation
(11). The estimator errors are averaged over 100 runs. The
simulation results are shown in Figure 5, where x axis is the
sample size (L) and y axis is the expected estimation error
(E[e]). We compare the results of different sizes of vulnera-
ble population (N=180000, 360000, 720000) with the curve
“y = 1

x
”. It is shown that the bound on the expected esti-

mation error is tight and rather accurate for a wide range
of L.

4.3 Performance Evaluation
How much does the self-learning process help a worm in

speeding up the propagation? To answer this question, we
compare the propagation speed of self-learning worms with
that of an optimal dynamic importance-scanning worm, a
random-scanning worm, a permutation-scanning worm, and
a Class A routing worm. The simulated worms have the pa-
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Figure 6: Performance of self-learning Code Red
worms.

rameters comparable to those of Code Red v2, which has
a vulnerable population N=360,000 and a scanning rate
s=358 per minute [10, 25]. We assume a hitlist of 10 (i.e.,
I0 = 10). The experiments stop when 99% vulnerable hosts
are infected. We employ the AAWP model [3] to study the
propagation of a self-learning worm in the learning stage
and the model in Equation (8) to imitate the spread in the
importance-scanning stage with the optimal static importance-

scanning strategy p∗
g(i) =

√
Ωipg(i)

P
m
k=1

√
Ωkpg(k)

. In our exper-

iments, the self-learning worm switches from the learning
stage to the importance-scanning stage when the worm server
observes 10,000 worm clients. Since the expected estima-
tion error of group distribution is less than 10−4, we assume
that the worm server can accurately estimate the underly-
ing group distribution pg(i) at the end of the learning stage.



Here we also use the web-server distribution in /8 subnets
shown in Figure 2(a) as an example of vulnerable-host group
distribution.

Figure 6(a) shows the propagation comparison among a
self-learning Code Red, a permutation-scanning Code Red,
and a random-scanning Code Red. In permutation scanning,
all worms share a common pseudo random permutation of
the IP address space and coordinate to provide comprehen-
sive scanning [21]. Such a permutation scanning is imple-
mented by Weaver’s simulator, which uses a 32-bit, 6-round
variant of RC5 to generate all permutations and random
number. Compared with a permutation-scanning worm, a
self-learning worm spreads slower in the learning stage, but
propagates much faster in the importance-scanning stage.
Figure 6(b) demonstrates the spread of another self-learning
Code Red if the worm uses the Class A routable scanning
in the learning stage. A Class A routable-scanning worm
reduces the scanning space to 45.3% of the entire IPv4 ad-
dress space [26]. It is noted that self-learning Code Red
worms spend much time on the learning stage to infect
the first 10,000 hosts. After collecting the information of
10,000 worm clients, the self-learning worms use only 81
minutes to infect the rest about 350,000 vulnerable hosts in
the importance-scanning stage. In comparison, a random-
scanning Code Red, a permutation-scanning Code Red, and
a Class A routing Code Red need 271 minutes, 194 min-
utes, and 123 minutes, respectively, to finish the infection.
Hence, a simple self-learning process can greatly increase
worms’ spreading speed.

5. DETECTING AND DEFENDING AGAINST
SELF-LEARNING WORMS

How can we detect and defend against self-learning worms?
Our study on self-learning worms provides the following
guidelines:

• When a new application is introduced to the future
Internet, how can we deploy this application? From
Equation (4), attackers attempt to minimize Y by
choosing the optimal static group scanning distribu-
tion p∗

g(i), while defenders endeavor to maximize Y
by customizing the group distribution pg(i). This is
a classic two-person zero-sum game [12] between the
attackers and the defenders, which leads to

Yopt = min
p∗

g(i)
max
pg(i)

{Y } = max
pg(i)

min
p∗

g(i)
{Y }. (23)

From the derivation in Section 3.1, we see that the
optimal strategy for the defenders is to deploy a new
application uniformly in the Internet for any group-
ing criteria, such as /8 subnets, /16 subnets, and DNS
Top-Level Domains [6]. Thus, the self-learning pro-
cess cannot help the worm in speeding up the propa-
gation. It is a common belief that IPv6 can slow down
the spread of scanning worms effectively due to the
large address space. An importance-scanning worm,
however, can have an astonishing spreading speed, if
vulnerable hosts are still distributed in a non-uniform
fashion and the group distribution can be obtained.
A similar observation has also been pointed out us-
ing a different metric in [2]. On the other hand, cur-
rent traffic engineering requires non-uniform partition
of the address space for routing aggregation. How to

balance the tradeoff between traffic engineering and
security engineering is a challenging task for designing
the future Internet.

• Since a self-learning worm has an astounding spread-
ing speed at the importance-scanning stage, defend-
ers need to detect the worm during the learning stage
of worm propagation. Scan/probe detection can be
combined with content-based anomaly detection to im-
prove the speed and the accuracy of detection. More-
over, a good detection system should be distributed as
proposed in [14]. Interestingly, the effectiveness of this
worm monitoring system [14] strongly depends on ob-
taining the information of the underlying vulnerable-
host group distribution in /8 subnets and /16 subnets.
Thus, the weapon race between the attackers and the
defenders relies on how each side can collect and pro-
cess the information of vulnerable-host distribution.
The cooperation between the defenders from different
domains provides information sharing, and therefore a
possibly more effective detection system [8].

• For the self-learning worm system proposed in this pa-
per, a key issue in defense is to detect and disable
the worm server before the importance-scanning stage.
One possible method to detect the worm server, for ex-
ample, is to use host contact graph presented in [23].
After detecting the worm server, different mechanisms
can be applied to disable the worm server, for example,
putting the IP address of worm server in the address
blacklisting [11]; providing false information of worm
clients to the worm server; or even performing Denial
of Service (DoS) attack on the worm server.

6. CONCLUSIONS
In this paper, we characterize a new scan-based worm

through both analysis and simulation. This “self-learning
worm” has the intelligence to gather and process informa-
tion while propagating and thus increases the propagation
speed. This self-learning ability of worms can also be ap-
plied to gain knowledge about other distribution informa-
tion, such as DNS Top-Level Domains, countries, and Au-
tonomous Systems. The self-learning worms presented in
this paper use a simple proportion estimator. As our fu-
ture work, other learning algorithms are worth investigating.
Moreover, it is shown that the worm server can accurately
estimate the group distribution with a large sample size.
We plan to study the effect of estimation error on the worm
propagation with a small or medium sample size. Since col-
lected information is important for both attackers and de-
fenders, we plan to study how the defenders from different
domains can share information and build up practical and
effective defense systems against future intelligent worms.
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