Self-Stopping Epidemic Routing in Cooperative Wireless Mobile Sensor Networks

Zesheng Chen
Chao Chen
Indiana University - Purdue University
Fort Wayne, Indiana, USA

Outline

• Motivations and problem definition
• System model
• Proposed strategy
• Summary

Epidemic Routing in Mobile Networks

• Application scenario: Wireless mobile sensor networks for critical event detection and reporting
• Random mobility and liability to damage make it difficult to find and maintain a stable end-to-end routing path.
• Epidemic routing: each node transmits information to a random neighbor in its communication range.

Challenge: limit the unnecessary spreading of messages, in order to save energy consumption and buffer usage.

Existing Work and Our Goal

• Existing work:
 – Reduce the relaying overhead
 – Explicit stopping mechanisms based on local decisions
• Our focus: a self-stopping strategy in epidemic routing that
 – Ensures a message to reach a certain percentage of nodes, and
 – Stops forwarding when this percentage of nodes have received a copy of the message
Overview of Our Work

• A mathematical model for epidemic routing
 – To accurately characterize information dissemination in wireless sensor networks with rapid and random mobility

• A time-based probabilistic self-stopping strategy
 – Fast: spreading converges fast with a predictable stopping time
 – Accurate: final reach consistently follows the predicted target reach (can be small)
 – Energy efficient: spreading stops when the goal is met

System Model

• N moving sensor nodes: transmits sensed information; store, carry, and forward to the closest neighbor; the forwarding will continue until certain stopping criteria have been met.

• Assumptions:
 – Moving speed is fast compared to the inter-transmission time: Neighbors in successive transmission windows are independent
 – A message is limited in size and can be successfully transmitted during a single node contact.
 – Synchronous time model: Transmission time is divided into discrete time slots

Performance Metrics

Parameter:
• Target reach (α): a pre-set fraction of the network nodes to receive a copy of the message

Metrics:
• Final reach: the actual fraction of node that have received the message when the spreading stops
• Stopping time: the total time to complete the whole spreading process

Model Selection: ODE Model?

• Continuous-time ODE model:
 $I(t)$: number of “infected” nodes
 \[I'(t) = \beta I(t)(N - I(t)) \]
 where pairwise meeting rate $\beta = \frac{1}{N-1}$

• Limitations:
 – The time that a node takes to forward and receive the message is not considered.
 – A node can be double-counted as multiple relay nodes can choose it as the next forwarder.

\rightarrow The ODE model tends to over-estimate the size of the infection over time.
Model Selection: AAWP Model!

- Discrete-time AAWP model:
 \[I(t + 1) = I(t) + [N - I(t)] \left[1 - \left(1 - \frac{1}{N-1} \right) I(t) \right] \]

- A node cannot send a message to any neighbor before the message is received completely.
- An uninfected node can only receive a message from at most one neighbor.

→ The AAWP model is more accurate than the ODE model.

Model Comparison

![Graphs comparing AAWP and ODE models for different values of N and α](image)

Simulation Results

- **First, predict message life time** \(t_f \) **from the AAWP model:** \(I(t_f - 1) < \alpha N \leq I(t_f) \)

Algorithm 1 Time-based self-stopping strategy

- **Input:** \(t_0, t_f, \) and current time \(t \) (\(t \geq t_0 \) and \(t \) is discrete)
 - if \(t < t_0 + t_f \) then
 - Forward the message to a randomly selected neighbor
 - else
 - Stop forwarding
 - end if

- Although the spreading halts in a timely and predictable manner, the final reach is usually beyond the target reach and with a large standard deviation.

→ NOT accurate, NOT energy-efficient
Probability-Based Self-Stopping Strategy?

- If a relay node finds a selected neighbor already “infected”, it will stop spreading the message with a stopping probability \(p \) and enter “recovery” mode.
- **Extended AAWP model:**
 \[
 I(t+1) = I(t) + S(t) \left[1 - \left(1 - \frac{1}{N-1} \right)^{I(t)} \right] - pI(t)f(t),
 \]
 \[
 R(t+1) = R(t) + pI(t)f(t),
 \]
 \[
 f(t) = 1 - \frac{S(t)}{N-1},
 \]

 - \(I(t) \): # of infected nodes
 - \(R(t) \): # of recovered nodes
 - \(S(t) \): # of vulnerable nodes
 - \(I(t) + R(t) + S(t) = N \)

Algorithm

- First, calculate stopping probability \(p \) from the extended AAWP model

Algorithm 2 Probability-based self-stopping strategy

Input: Stopping probability \(p \)
Randomly select a neighbor \(n \)
if \(n \) has not received the message then
 Forward the message to it
else
 Generate a random number \(r \) in \([0, 1)\)
 if \(r \leq p \) then
 Stop forwarding and become recovered
 end if
end if

Simulation Results

- Although the final reach converges to the specified target reach, the stopping time is much longer and with a higher variation.
- It is impossible to control the spreading to a smaller scale (e.g., under 80%)

\[\blacktriangleright \text{NOT fast, NOT energy-efficient} \]

Time-Based Probabilistic Self-Stopping Strategy

- Another look at the time-based self-stopping strategy: The spreading does not stop at target reach \(\alpha \). Some nodes may need to stop forwarding before \(t_f \).
- A relay node will continue forwarding the message with a final forwarding probability \(q \) after \(t_f - 1 \).
- **Modified AAWP model:**
 \[
 \alpha N = I(t_f - 1) + \left[N - I(t_f - 1) \right] \left[1 - \left(1 - \frac{1}{N-1} \right)^{q(t_f-1)} \right]
 \]
 \[
 q = \frac{\ln \left(N - I(t_f - 1) \right) - \ln(N - \alpha N)}{I(t_f - 1) \ln(N - 1) - \ln(N - 2)}
 \]
Algorithm

- First, estimate message life time t_f and final forwarding probability q from the modified AAWP model.

Algorithm 3 Time-based probabilistic self-stopping strategy

Input: t_0, t_f, q, and current time t ($t \geq t_0$ and t is discrete)

if $t < t_0 + t_f - 1$ then
 Forward the message to a randomly selected neighbor
else if $t = t_0 + t_f - 1$ then
 Generate a random number r in $[0, 1)$
 if $r \leq q$ then
 Forward the message to a randomly selected neighbor
 else
 Stop forwarding
 end if
else
 Stop forwarding
end if

Simulation Results

- The final reach closely follows the preset target reach (can be below 80%), with very small variance.
- The spreading converges fast with a predictable stopping time.

→ Fast, accurate, and energy-efficient!

Summary

- **Epidemic routing** is studied for information dissemination in cooperative wireless mobile sensor networks with rapid and random node movement.

- A **time-based probabilistic self-stopping strategy** is proposed based on the modified AAWP model, which is more accurate than the continuous-time ODE model.

- This self-stopping strategy is shown to be **fast, accurate, and energy efficient**.

Thanks for Your Attention!