
Heterogeneity in Vulnerable Hosts Slows Down

Worm Propagation

Zesheng Chen and Chao Chen

Department of Engineering

Indiana University - Purdue University Fort Wayne, Indiana 46805

Email: {zchen, chen}@engr.ipfw.edu

Abstract—Worm attacks continue to be a significant threat to
the Internet and have been a main tool used by botnets to recruit
bots. Worm propagation models are important for understanding
worm dynamics and designing effective and efficient detection
and defense systems. The existing models, however, ignore the
heterogeneity in vulnerable hosts and assume that the worm-
scanning rate is the same for all infected hosts. In this work, we
analytically and empirically study the impact of heterogeneity
of vulnerable hosts on worm propagation. Specifically, we first
apply the Jensen’s inequality to show that the heterogeneity in
vulnerable hosts indeed hinders the speed of worm propagation.
We then conjecture, through the approximation analysis, that
if the degree of the heterogeneity in vulnerable hosts is higher,
the worm spreads slower. Next, we propose a novel model to
predict and characterize worm dynamics among heterogeneous
vulnerable hosts. Finally, applying the scale-down simulations
and simulating the propagation of a Witty-like worm in the
Internet, we verify our analytical results and demonstrate that
our proposed model can accurately predict the spread of worms
among heterogeneous vulnerable hosts.

I. INTRODUCTION

Worms infect vulnerable hosts and use them to compromise

other vulnerable hosts. Such a self-propagation attack has been

a significant threat to network security since 2001. Internet

worms, such as Code Red, Nimda, Slammer, Witty, and Storm,

infected a large number of hosts and caused huge damages.

In recent years, worms have also been a main tool used by

botnets to recruit a certain number of compromised machines

and collect the information of infected hosts. Therefore, it is

important and imperative to accurately model the spread of

worms in the Internet.

Worm propagation models can help better understand worm

dynamic characteristics. More importantly, such models are

fundamental for detecting and defending against Internet

worms. Mathematical models of worm spreading have been

widely studied. For example, differential equations have been

used to describe random-scanning worms [13], [19] and to

design a worm detection system [18]. A discrete-time model

has been proposed with the consideration of host recovery and

patch, and has been exploited to monitor, detect, and defend

against worms [1]. A stochastic model has been studied to

reflect the variation of worm propagation and its impact to

worm detection [10]. All existing models, however, assume

that vulnerable hosts are homogeneous and as a result, that all

infected hosts use the same scanning rate to search for targets.

Two related works [17], [6] consider that the scanning rate of

infected hosts can vary with time. But these two works also

make the assumption that the worm-scanning rate is the same

for all infected hosts. Therefore, the impact of heterogeneity

in vulnerable hosts on worm propagation has not been studied

yet.

Vulnerable hosts in the Internet have been shown to be

significantly heterogeneous. The network conditions and the

computer performance of end-hosts are very different. Specif-

ically, it has been shown that 70% of the end-hosts in a popular

BitTorrent system have an upload capacity between 350 Kbps

and 1 Mbps, whereas 10% of them have an upload capacity

of 10 Mbps or more [5]. Moreover, 64% of the available

resources are contributed by only 5% of hosts that have the

bandwidth between 55 Mbps and 110 Mbps. A measurement

study of the Witty worm also indicates strong heterogeneity

in vulnerable hosts [12]. For instance, the bit rates of infected

hosts span from less than 56 Kbps to more than 100 Mbps.

Hence, when studying worm propagation models, we cannot

ignore the effect of the heterogeneity in vulnerable hosts.

The goal of this work is to study the impact of heterogeneity

in vulnerable hosts on worm propagation. Specifically, we

attempt to answer the following questions:

• Does heterogeneity in vulnerable hosts slow down worm

propagation?

• If vulnerable hosts have a higher degree of heterogeneity,

would this have a greater impact on worm spreading?

• How can we effectively predict and model worm propa-

gation among heterogeneous vulnerable hosts?

To answer these questions, we analytically and empirically

study the worm propagation among both homogeneous and

heterogeneous vulnerable hosts. Our analysis is based on

the probabilistic model, and the inequality and approxima-

tion techniques; whereas the simulation uses the scale-down

method and mimics the spread of the Witty-like worm in

the Internet. Specifically, we summarize our discoveries and

contributions in the following:

• Through both analysis and simulation, we find that sta-

tistically the worm has a smaller spreading speed among

heterogeneous vulnerable hosts with distinct scanning

rates than among homogeneous vulnerable hosts with the

same scanning rate. For instance, we demonstrate that

a Witty-like worm can be slowed down three times on

average in the heterogeneous case than in the homoge-
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neous case. Therefore, heterogeneity in vulnerable hosts

can potentially slow down worm spreading significantly.

• We show analytically and conjecture that if the degree

of heterogeneity in vulnerable hosts is higher, the worm

propagates slower. Our simulation results verify the con-

jecture. This indicates that the current high degree of

heterogeneity among vulnerable hosts in the Internet

indeed helps defenders to gain some time to respond to

worm attacks.

• We then design a novel model to predict the spread

of worms among heterogeneous vulnerable hosts. Such

a model characterizes the worm propagation delay, i.e.,

the time difference between the homogeneous case and

the heterogeneous case. Simulation results show that our

model can accurately predict the dynamics of worm

propagation among heterogeneous vulnerable hosts.

The remainder of this paper is structured as follows. Section

II discusses the heterogeneity in vulnerable hosts. Section III

gives our analysis on worm propagation among heterogeneous

vulnerable hosts, whereas Section IV uses simulations to verify

our analytical results. Finally, Section V concludes this paper.

II. HETEROGENEITY IN VULNERABLE HOSTS

Vulnerable hosts in the Internet are heterogeneous. This

lies in the fact that end-hosts in the Internet have distinct

bandwidth and computer performance. A host may connect

to the Internet through a dial-up connection (e.g., 56 Kbps), a

digital subscriber line (DSL) (e.g., 4 Kbps ∼ 50 Kbps), a local

area network (LAN) (e.g., 10 Mbps, 100 Mbps, or 1 Gbps), or

a wireless LAN (e.g., 54 Mbps) [7]. Moreover, many worms

such as Slammer and Witty are bandwidth limited and send

packets as fast as the infected hosts’ Internet connection allows

[8], [12]. A measurement study on the Witty worm has shown

that the infected hosts are heterogeneous [12]. Specifically,

while the average transmission speed of an infected host is 3

Mbps, 61% of infected hosts transmit with bit rates between

96 Kbps and 512 Kbps.

For an individual infected host, the bandwidth mainly de-

termines how many scans per unit time a bandwidth-limited

worm can send to find targets, i.e., the worm-scanning rate. If

an infected host has a higher bandwidth, the worm-scanning

rate is always higher. In this work, therefore, we use the

variation of worm-scanning rates to reflect the heterogeneity

in vulnerable hosts.

III. THEORETICAL ANALYSIS

Since vulnerable hosts have distinct bandwidth and com-

puter performance, worm-scanning rates from infected hosts

can be very different. In this paper, we specifically focus on the

impact of the variation of scanning rates on worm propagation

and make several simplified assumptions. First, we assume that

once a host is infected, it remains in the infection state. Such

a susceptible → infected (SI) model has been widely used in

studying worm spreading [13], [19], [3], [14], [10]. Second, we

focus on random-scanning worms. Random scanning selects

target IPv4 addresses uniformly and has been exploited by

many worms such as Code Red [9], Slammer [8], and Witty

[12]. The observations found in this paper, however, can be

well extended to other scanning methods such as localized

scanning [13] and importance scanning [2]. Finally, while the

scanning rates of infected hosts can be different from each

other, we assume that the scanning rate of an individual host

does not vary with time. This is a reasonable assumption

for two reasons: (1) As indicated by our analysis, the time

period of worm propagation that we are interested in is at the

early stage, i.e., before the worm has infected many hosts and

congested networks. (2) It has been observed that an infected

host always scans for vulnerable hosts at the maximum speed

allowed by its network conditions and computing resources

[16].

In this section, we first show theoretically that compared

with worm propagation among homogeneous vulnerable hosts,

worm spreading is slowed down among heterogeneous vul-

nerable hosts. We then demonstrate and conjecture that if

the degree of heterogeneity in vulnerable hosts is higher,

worms spread slower. Finally, we provide a novel worm model

that characterizes the spread of worms among heterogeneous

vulnerable hosts.

A. Comparing Worm Propagation with Homogeneous Vulner-

able Hosts and with Heterogeneous Vulnerable Hosts

We use a discrete-time system to analyze the effect of the

variation of scanning rates on worm propagation. Specifically,

it is assumed that there are totally N vulnerable hosts and

currently I infected hosts. Infected host i (i = 1, 2, · · · , I) uses

a scanning rate of si, i.e., sends si scans per unit time. Then,

the total number of scans at the next time step is
∑I

i=1 si.

Therefore, the probability that an uninfected vulnerable host

is hit by a worm scan at the next time step is

ph =
N − I

Ω
·

I
∑

i=1

si, (1)

where Ω is the scanning space. Thus, the time to recruit a new

victim, T , follows the geometric distribution, i.e.,

Pr(T = k) = ph(1 − ph)k−1, k = 1, 2, 3, · · · (2)

which leads to

E[T |s1, s2, · · · , sI ] =
1

ph

=
Ω

(N − I)
∑I

i=1 si

. (3)

It can be seen that if E[T ] is smaller, the worm spreads faster.

If all infected hosts are homogeneous, si = s, ∀i, i.e., the

scanning rate for all infected hosts is a constant. Thus, the

expected time to recruit a new victim is

E[T ] =
Ω

sI(N − I)
. (4)

On the other hand, if infected hosts are heterogeneous, the

scanning rate can be very different for distinct infected hosts.

Because of the nature of random scanning, each instant

of worm propagation can infect vulnerable hosts in totally

different orders. Hence, we assume that si’s are independent
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and identically-distributed (i.i.d.) random variables with mean

s and variance σ2 (σ2 ≥ 0). Note that if σ2 = 0, vulnerable

hosts are homogeneous; otherwise, they are heterogeneous.

Therefore, from the law of total expectation, we have

E[T ] = E[E[T |s1, s2, · · · , sI ]] =
Ω

N − I
E

[

1
∑I

i=1 si

]

. (5)

According to the Jensen’s inequality [11], [4], if X is a

random variable, f is a strictly convex function (i.e., f ′′(x) >

0), and E[X] and E[f(X)] exist, then

E[f(X)] ≥ f(E[X]), (6)

where the equality holds if an only if X is a constant.

Here, we apply the Jensen’s inequality by setting f(x) = 1
x

.

Since f ′(x) = − 1
x2 and f ′′(x) = 2

x3 > 0 when x > 0, 1
x

is a

strictly convex function. We then find from Equation (5) that

E[T ] ≥
Ω

N − I
·

1

E[
∑I

i=1 si]
=

Ω

sI(N − I)
, (7)

where the equality holds if and only if σ2 = 0.

Comparing Equation (4) and Inequality (7), we have the

following theorem.

Theorem 1: If worm-scanning rates si’s are i.i.d. random

variables with mean s and variance σ2, then the worm spreads

slower when σ2 > 0 than when σ2 = 0. That is, statistically

the worm has a smaller spreading speed among heterogeneous

vulnerable hosts with distinct scanning rates than among

homogeneous vulnerable hosts with the same scanning rate.

Theorem 1 indicates that the existing worm propagation

models ignore the variation of scanning rates and thus over-

estimate the worm propagation speed. Moreover, Theorem

1 reflects that the heterogeneity in vulnerable hosts indeed

hinders worm propagation and can help defenders gain some

time to respond to worm attacks.

B. Conjecturing the Impact of the Degree of Heterogeneity in

Vulnerable Hosts

Since the heterogeneity in vulnerable hosts slows down

worm propagation, a question arises: Would the worm spread

slower if the degree of the heterogeneity of vulnerable hosts

is higher? That is, when σ2 increases, would E[T ] be larger?

To answer this question, we apply Taylor expansion and

approximation techniques. Specifically, we study the Taylor

expansion of function f(x) = 1
x

, i.e.,

f(x) =
1

a
+ f ′(a)(x − a) +

1

2
f ′′(a)(x − a)2 + H (8)

≈
1

a
−

x − a

a2
+

(x − a)2

a3
. (9)

In the above equation, H contains the higher-order terms and

can be ignored. Note that E[
∑I

i=1 si] = sI . Then, setting

x =
∑I

i=1 si and a = sI in the above equation, we have

1
∑I

i=1 si

≈
1

sI
−

∑I

i=1 si − sI

s2I2
+

(
∑I

i=1 si − sI)2

s3I3
. (10)

Taking the expectation on both sides of the above equation,

we obtain

E

[

1
∑I

i=1 si

]

≈
1

sI
+

E[(
∑I

i=1 si − sI)2]

s3I3
(11)

=
1

sI
+

Var[
∑I

i=1 si]

s3I3
(12)

=
1

sI
+

σ2

s3I2
. (13)

Therefore, from Equations (5) and (13), the expected time to

recruit a new victim is

E[T ] ≈
Ω

sI(N − I)
+

Ωσ2

s3I2(N − I)
. (14)

In the above equation, the first term (i.e., Ω
sI(N−I) ) is identical

to E[T ] for the homogeneous case, and the second term is

proportional to σ2. Based on this approximation result, it is

obvious that when σ2 increases, E[T ] also increases. Hence,

we have the following conjecture.

Conjecture 1: When σ2 is larger, the worm spreads slower.

That is, the worm propagates slower among the vulnerable

hosts with a higher degree of heterogeneity.

C. Modeling Worm Propagation among Heterogeneous Vul-

nerable Hosts

We apply a novel approach to characterize the spread

of random-scanning worms among heterogeneous vulnerable

hosts. Instead of obtaining the propagation speed of worms,

we attempt to study how much worm propagation delay, com-

pared with the homogeneous case, is caused by the variation

of worm-scanning rates. In this way, once we simulate or

model the worm spreading among homogeneous vulnerable

hosts, we can predict or model the worm propagation among

heterogeneous vulnerable hosts.

We first use two worm-scanning rates as an example to

demonstrate our modeling procedure. We assume that among

N vulnerable hosts, p ·N hosts have a scanning rate of r1, and

(1− p) ·N hosts have a scanning rate of r2, where 0 ≤ p ≤ 1
and r1 6= r2. That is, a randomly selected infected host has

a scanning rate of r1 with probability p and a scanning rate

of r2 with probability 1 − p. Thus, the average scanning rate

is s = pr1 + (1 − p)r2. That is, p = r2−s

r2−r1

. Note that p can

be derived, given arbitrary values of r1, r2, and s. Moreover,

among the I infected hosts, the number of hosts having the

scanning rate of r1 follows the binomial distribution B(I, p).
If k infected hosts have a scanning rate of r1, then

∑I

i=1 si =
kr1 + (I − k)r2. From Equation (5), we then obtain

E

[

1
∑I

i=1 si

]

=
I

∑

k=0

(

I

k

)

pk(1 − p)I−k
1

kr1 + (I − k)r2
.

(15)

Therefore, based on the above equation and Equation (4),

we can calculate the time difference to recruit a new victim

between the heterogeneous case and the homogeneous case,
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i.e.,

∆E [TI ] =
I

∑

k=0

(

I

k

)

Ωpk(1 − p)I−k

[kr1 + (I − k)r2](N − I)

−
Ω

sI(N − I)
. (16)

According to the feature of the binomial distribution, when I

is large, kr1+(I−k)r2 approaches sI with a high probability,

and thus ∆E [TI ] is very small and can be ignored. Therefore,

we only need to calculate the time difference when I is not

large (e.g., I ≤ 1% of the total number of vulnerable hosts).

In other words, the worm propagation difference between the

heterogeneous case and the homogeneous case only occurs

at the early stage of worm spreading when the number of

infected hosts is small. Statistically, once a worm has recruited

a sufficient number of infected hosts, the heterogeneity in

vulnerable hosts has little impact on the worm propagation.

On the other hand, when a worm has just started spreading

from one or a small number of infected hosts, the impact of

the heterogeneity in vulnerable hosts on worm dynamics can

be significant, which will be shown in the next section.

Specifically, if we assume that a worm starts spreading from

one infected host and set I0 as the upper bound for calculating

∆E [TI ] in Equation (16), then

DH =

I0
∑

i=1

∆E [Ti] (17)

represents how much delay is caused by the variation of

scanning rates at the early stage of worm propagation. That

is, once we obtain the propagation curve for worms among

homogeneous vulnerable hosts, we can then shift the curve

with the delay DH to predict the worm spreading among het-

erogeneous vulnerable hosts with the same average scanning

rate.

Note that such a modeling procedure can be easily extended

to the case of multiple worm-scanning rates or the case

when worm-scanning rates follow an arbitrary distribution. For

example, when a worm has multiple scanning rates (i.e., r1,

r2, · · · , rm), an infected host has a scanning rate of ri with

probability pi, where m is the number of scanning rates and
∑m

i=1 pi = 1. Let ni (ni ≥ 0) denote the number of infected

hosts among I infected hosts that have the scanning rate of

ri, where
∑m

i=1 ni = I . Then, ni’s have a multinomial distri-

bution with parameters I and pi’s, and
∑I

i=1 si =
∑m

i=1 niri.

Therefore, Equation (15) becomes

E

[

1
∑I

i=1 si

]

=
∑

∑
ni=I

(I!) (
∏m

i=1 pni

i
)

(
∏m

i=1 ni!)(
∑m

i=1 niri)
. (18)

Moreover, if si’s are i.i.d. random variables with probability

distribution fS(s). Then,

E

[

1
∑I

i=1 si

]

=

∫

· · ·

∫
∏I

i=1 fS(si)
∑I

i=1 si

ds1 · · · dsI . (19)

In a similar way, we can obtain ∆E [TI ] and DH for the worm

with multiple scanning rates or an arbitrary distribution of

scanning rates, and use them to predict the worm propagation

among heterogeneous vulnerable hosts.

IV. SIMULATION VERIFICATION

We verify the analytical results in the previous section by

simulating the spread of a worm among vulnerable hosts with

both homogeneous and heterogeneous scanning rates. As an

initial attempt, we only study random-scanning worms with

two scanning rates. That is, we assume that some infected

hosts have a scanning rate of scan1, whereas others have a

scanning rate of scan2. If scan1 = scan2, it is the homo-

geneous case; otherwise, it is the heterogeneous case. Both

homogeneous and heterogeneous cases have the same average

worm-scanning rate. Moreover, the target of each worm scan

is created by a random number generator over the scanning

space, so that each host is hit by the worm scan with an

equal probability. Once an uninfected vulnerable host is hit

by a worm scan, we record the infection time, i.e., when

this vulnerable host is compromised. Based on this infection

time, we can count the number of infected hosts at each

time step and thus obtain the worm propagation curve. In

our simulations, the worm starts spreading from one infected

host (i.e., hitlist = 1), which is randomly selected from the

vulnerable hosts.

To obtain the analytical results for worm propagation in the

heterogeneous case, we first obtain the simulation results for

worm spreading in the homogeneous case, and use Equations

(16) and (17) to calculate the delay (i.e., DH ) caused by

the variation of scanning rates. We then shift the worm

propagation curve from the homogeneous case with the delay

DH to predict worm spreading in the heterogeneous case.

Specifically, in this section we first apply scale-down sim-

ulations to obtain the observations of worm propagation in a

/16 network. We then simulate the spread of Witty worms in

the IPv4 address space.

A. Scale-Down Simulations

A scale-down simulation studies worm propagation in a

much smaller scanning space, instead of the IPv4 address

space that contains 232 IP addresses [15]. In such a way,

the patterns of worm spreading can be obtained in a much

shorter time through simulations. We apply the technique of

scale-down simulations and simulate the spread of random-

scanning worms in a /16 subnet. Specifically, we assume that

the scanning space is 216 (i.e., Ω = 65536), the number of

vulnerable hosts is 5000 (i.e., N = 5000), and the average

scanning rate is 10 /second (i.e., s = 10 /second).

Figure 1 shows the simulation results of worm propagation

with four cases of two scanning rates: (1) scan1 = scan2 = 10;

(2) scan1 = 5 and scan2 = 15; (3) scan1 = 1 and scan2 = 19; (4)

scan1 = 1 and scan2 = 91. The curves in the figure are averages

over 10000 runs. It can be seen that compared with the worm

in the homogeneous case (i.e., case (1)), worms spread slower

in the heterogeneous cases (i.e., cases (2)-(4)), which verifies
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Fig. 1. Impact of scanning-rate variation on worm propagation in scale-down
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Fig. 2. Comparisons of worm propagation from scale-down simulations and
from the model (Ω = 65536, N = 5000, s = 10 /second, hitlist = 1, and
I0 = 50).

Theorem 1. Moreover, if the degree of the heterogeneity in

vulnerable hosts is higher, the worm spreads slower, which

confirms Conjecture 1. Specifically, the worm takes on average

28.1 seconds to infect all vulnerable hosts in case (1), whereas

the worm uses 28.8, 36.0, and 55.0 seconds in cases (2), (3),

and (4), respectively. Moreover, it can be seen from the figure

that after the worm has infected a certain number of hosts

(e.g., 10% of vulnerable hosts), the propagation curves for all

four cases are identical, which verifies our observations from

Equation (16).

Figure 2 compares the simulation results to our analytical

results for the heterogeneous cases. In Equation (17), we set

50 as the upper bound (i.e., I0 = 50) to calculate the delay

(i.e., DH ). Specifically, we find that DH = 0.7, 8.1, and 26.8

seconds for cases (2)-(4). From the figure, it can be seen that

the curves of analytical results and simulation results overlap,

indicating that our prediction is accurate.

B. Witty-Worm Propagation Simulations

Next, we simulate the spread of a worm in the IPv4 address

space, using the parameters from the Witty worm. Specifically,

the Witty worm scans the entire IPv4 address space (i.e., Ω =
232), targets 55909 vulnerable hosts (i.e., N = 55909), and

uses an average scanning rate of 1200 /seconds (i.e., s = 1200
/seconds) [12]. We consider three cases of two worm-scanning

rates: (1) scan1 = scan2 = 1200; (2) scan1 = 200 and scan2 =

2200; (3) scan1 = 100 and scan2 = 10000. For case (3), two

scanning rates differ 100 times, which is motivated from the

observation that the bandwidth capacity of end-hosts can have

100 times difference [5]. For each scenario, we simulate 100

runs with different seeds. Since the major difference among

three cases occurs in the time period before the worm infect

a significant portion of vulnerable hosts, our simulator stops

running when the worm has compromised 30000 hosts.

Figure 3 shows the spread of the Witty worm with three

different combinations of two scanning rates. In each sub-

figure, the “5%” curve indicates that a worm spreads no

faster than this curve in 5 out of 100 simulation runs. The

similar definition is applied to the “25%”, “50%”, “75%”,

and “95%” curves. Moreover, the “mean” curve is the average

over 100 runs. It can be seen that the worm propagates faster

in the homogeneous case than in the heterogeneous cases.

Furthermore, when the degree of heterogeneity in vulnerable

hosts increases, the worm spreads slower, and the variation of

worm propagation is larger. These observations are similar to

those in the scale-down simulations and verify our analysis.

Specifically, comparing cases (1) and (3), we find that the

worm uses on average 756.0 seconds to infect 30000 hosts

in the homogeneous case, whereas the worm needs 2212.9

seconds to compromise the same number of hosts in the

heterogeneous case. This means that the worm is slowed

down about 3 times due to the variation of scanning rates

and indicates that the heterogeneity in vulnerable hosts can

potentially impact worm spreading significantly.

We then further evaluate the performance of our prediction

to worm propagation among heterogeneous vulnerable hosts

in Figure 4. In our predication, we use only 10 as the upper

bound in Equation (17), i.e., I0 = 10. In this figure, the

curves of simulations are the averages over 100 runs, whereas

the curves of the model are based on Equations (16) and

(17). It can also be seen that the curves of simulation and

analytical results are very close, indicating that our model

well characterizes the dynamics of worm propagation among

heterogeneous vulnerable hosts.

V. CONCLUSIONS

In this work, we have shown that heterogeneity in vulnerable

hosts slows down worm propagation through both analysis

and simulation. Moreover, a higher degree of heterogeneity

in vulnerable hosts leads to slower propagation of worms.

We have also designed a new model to characterize worm

spreading among heterogeneous vulnerable hosts. Our model

focuses on the worm propagation time difference between

the heterogeneous case and the homogeneous case, and is

shown empirically to have a good performance to predict

worm dynamics. To the best of our knowledge, this is the
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Fig. 3. Impact of scanning-rate variation on witty-worm propagation (Ω = 232, N = 55909, s = 1200 /second, and hitlist = 1).
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Fig. 4. Comparisons of witty-worm propagation from simulations and from
the model (Ω = 232, N = 55909, s = 1200 /second, hitlist = 1, and
I0 = 10).

first attempt in understanding the impact of the heterogeneity

of vulnerable hosts on worm propagation quantitatively.

As our on-going work, we plan to extend the study to other

scanning methods such as importance scanning.
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