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Abstract—In cognitive radio networks, secondary users must
constantly probe the spectrum to promptly detect the arrival
and the departure of primary users (PUs). However, spectrum
probing is an energy-consuming process. This indicates the
tradeoff between the frequency of spectrum probing and the
delay of detecting the PU state change, and highlights the
need for energy-conscious spectrum-probing strategies. In this
paper, we provide a theoretical framework to find the optimal
spectrum-probing methods that minimize the probing delay
under a constraint on energy consumption in real stochastic
environments. Specifically, we find that the most widely used
spectrum-probing scheme, i.e., periodic probing, is not optimal
when the arrival rate of the PU state change is not constant or
when the distribution of PU channel occupancy/vacancy is not
uniform. On the other hand, the derived optimal strategies can
adapt to the dynamics of PUs and choose the probing intervals
based on the time-varying arrival rate of the PU state change or
the non-uniform distribution of PU channel occupancy/vacancy.
Our simulation results show that the optimal spectrum-probing
strategies perform much better and consume much less energy
than periodic probing in realistic environments.

I. INTRODUCTION

In a cognitive radio network, licensed users or primary

users (PUs) allow unlicensed users or secondary users (SUs)

to access the licensed spectrum opportunistically when PUs

are not transmitting. To allow for the coexistence of PUs and

SUs, an important condition is that SUs can monitor channels

and promptly detect the arrival of PUs, avoiding the harmful

interference to the transmission of PUs. Moreover, when PUs

transit from active to dormant states, SUs should be able to

sense the availability of the spectrum as soon as possible to

effectively use the precious channel resource. Therefore, how

fast a SU can respond to the arrival and the departure of PUs is

an important metric to the design of cognitive radio networks.

For example, IEEE 802.22 specifies that SUs should be able

to detect the appearance of PUs within 2 seconds with low

probabilities of misdetection and false alarm [19].

This work focuses on when a SU should schedule its

channel scans to detect the PU state change in a timely manner.

Traditionally, the term “spectrum sensing” is used to specify

the underlying physical and MAC techniques that detect

channel opportunities [1], [18], [8]. To avoid confusion, in this

paper we apply the term “spectrum probing” to specifically

refer to a scheduling strategy that a SU uses to constantly

probe the spectrum to discover transmission opportunities.

Spectrum probing is an energy-consuming process. Each

probe consumes a certain amount of energy [1]. As a result, it

is not desired to have a SU keep probing the spectrum all the

time when PUs are present. One way to conserve energy is to

prolong the time interval between spectrum probes. However,

this would introduce latency for SUs to discover channel

opportunities. Therefore, frequent spectrum probing can be

energy inefficient, whereas infrequent spectrum probing can

lead to the long delay to respond to the PU state change.

That is, there is obviously a tradeoff between the frequency

of spectrum probing (i.e., energy consumption) and the delay

of detecting the arrival or the departure of PUs.

In cognitive radio networks, the most widely used probing

method is periodic probing that SUs scan the spectrum at a

constant interval. In our previous work [3], we have shown that

for a single SU, periodic probing is an optimal method. That

is, given the same power budget on spectrum probing, periodic

probing can achieve the minimum delay to detect the PU state

change. The optimality of periodic probing, however, relies on

two key assumptions: 1) The arrival rate of the PU state change

is constant, and 2) the distribution of PU channel occupancy or

vacancy is uniform. It is clearly that these two assumptions are

not valid in real environments [17], [4]. First, the arrival rate of

the PU state change is time-varying [17]. Taking TV channels

as an example, PUs are much less active late at night than

in the daytime. Second, real measurements demonstrate that

the PU channel occupancy/vacancy distribution is not uniform

[4]. Hence, questions arise: In real stochastic environments, is

periodic probing still the optimal energy-efficient scheme? If

not, what is the optimal spectrum-probing strategy?

The goal of this work is to provide a theoretical framework

on the optimal spectrum-probing strategy that a SU can use to

effectively and efficiently detect the PU state change in real en-

vironments. To achieve this goal, we formulate an optimization

problem that minimizes the delay to detect the PU state change

given a constraint on energy consumption. Equivalently, the

derived optimal strategy minimizes energy consumption given

the delay performance constraint. We discover that under

realistic conditions, the periodic probing scheme is not optimal

and cannot adapt to the dynamic behaviors of PUs. On the

other hand, our proposed optimal strategy adaptively chooses

the probing intervals based on the time-varying arrival rate

of the PU state change or the non-uniform distribution of PU

channel occupancy/vacancy. That is, a smart SU should probe

the channels more frequently for the time slots when the PU



changes its state more frequently or with a higher probability.

For example, a SU can probe the spectrum at large intervals

late at night and use more energy for probing in the daytime

to catch the dynamics of TV channels. Through simulation

study, we find that the optimal spectrum-probing scheme

performs much better than periodic probing. For example, our

simulation results show that depending on the environment

conditions and the parameter setting, the energy saving in

spectrum probing can be as much as 29% to 82% if we

switch the spectrum-probing method from periodic probing

to the optimal scheme. Although the optimal scheme requires

the knowledge on the arrival rate of the PU state change or

the distribution of PU channel occupancy/vacancy, which may

not be available or accurate in practice, our theoretical results

can provide the performance bounds and aid in the design of

practical adaptive energy-efficient spectrum-probing strategies.

The remainder of this paper is structured as follows. Section

II introduces the system model and problem definition. Section

III revisits the optimality of periodic probing under certain

conditions. Sections IV and V derive and evaluate the optimal

probing scheme when the arrival rate of the PU state change

is not constant, and when the distribution of PU channel oc-

cupancy/vacancy is not uniform, respectively. Finally, Section

VI discusses the related work, and Section VII concludes this

paper.

II. SPECTRUM PROBING IN COGNITIVE RADIO NETWORKS

A. System Model

In a cognitive radio network, a SU senses the spectrum to

detect the presence/absence of PUs. The detection methods of

PUs’ signals include energy detection, matched filter detection,

and cyclostationary feature detection [1], [18]. In this work,

we are not interested in how a SU can detect PUs’ signals,

but when a SU should sense channels to promptly find the ar-

rival/departure of PUs and efficiently save the probing energy.

Therefore, the optimal spectrum-probing schemes proposed in

this paper can complement and apply to any physical and MAC

spectrum-sensing mechanisms.

Spectrum probing aims to detect the availability of a channel

in a timely manner. Similar to other works [7], [8], [9], [4],

we model a channel as a renewal process alternating between

ON (i.e., occupancy) and OFF (i.e., vacancy) states. As shown

in Figure 1, we use TV and TO to represent the sojourn times

of ON and OFF states. When a PU changes from ON to

OFF at time t0, if a SU probes the spectrum successfully at

time t1, then the SU can detect the PU state change with

the delay D = t1 − t0. Since the behavior of the PU is

not deterministic, i.e., TV and TO are random variables, D is

also a random variable. Hence, a good metric for evaluating

a spectrum-probing scheme is the average of D, i.e., E[D].
In this work, we call such a mean delay the “probing delay,”

which characterizes how fast a probing method can respond

to the PU state change (i.e., ON to OFF or OFF to ON).

To shorten the probing delay, one way is to reduce the time

interval between spectrum probes. However, probes consume

energy. In this work, we assume that each spectrum probe
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Fig. 1. Illustration of spectrum probing.

uses the same amount of energy. With the same constraint

on the probing delay, the spectrum-probing strategy that uses

fewer probes (i.e., a longer average spectrum-probing inter-

val) is more energy efficient. Moreover, similar to the work

[8], we assume that each spectrum probe consumes only a

small amount of time and can be regarded as an impulse.

Furthermore, we assume that compared with TV or TO, the

spectrum-probing interval is much smaller so that a PU state

change is never missed.

To model the sojourn times of a channel, we assume that

TV and TO are independent and identically distributed (i.i.d.),

and use random variable Y to represent them. However, the

optimization framework proposed in this paper can easily

be extended to the case when TV and TO have different

distributions. There are commonly two ways to characterize Y .

One concise way is to use the average, i.e., E[Y ], representing

the expected inter-change time of PU states. If we set λ as

the arrival rate of the PU state change, then E[Y ] = 1/λ.

Note that if λ is constant, the distribution of PU state change

times is stationary; otherwise, it is nonstationary. Another way

to describe Y is based on fY (y), i.e., the probability density

function of PU channel occupancy/vacancy. Such a distribution

can be uniform, exponential, Pareto, or other distributions. In

this paper, we attempt to derive the optimal spectrum-probing

strategies when λ is either constant or time-varying, and when

fY (y) follows an arbitrary distribution.

B. Problem Definition

In cognitive radio networks, the default spectrum-probing

scheme is periodic probing, which sends out probes at a

constant interval. Given a constraint on energy consumption,

would periodic probing be the optimal scheme that minimizes

the probing delay? Specifically, we study the following prob-

lems in this paper:

• Under what conditions is periodic probing the optimal

scheme, and why?

• If E[Y ] (i.e., λ) varies with time, what is the optimal

spectrum-probing scheme?

• If fY (y) follows an arbitrary distribution, what is the

optimal spectrum-probing scheme?

III. OPTIMALITY OF PERIODIC PROBING

In this section, we revisit the optimality of periodic probing.

Different from our previous work in [3], here we emphasize

the conditions under which periodic probing is optimal, and



use a more intuitive and general method to prove the optimality

of periodic probing under such conditions.

A. Periodic Probing

Periodic probing senses the spectrum once every T seconds

periodically, i.e., the spectrum is probed at time instants

0, T , 2T , · · · . We first consider when spectrum sensing

is reliable. That is, every probe can successfully detect the

presence/absence of the PU. We use A to denote the time

when the PU changes its state. Analytically, we assume that

random variable A is uniform over [0, T ], i.e.,

fA(x) =

{

1
T , 0 ≤ x ≤ T

0, otherwise.
(1)

Since periodic probing takes DP = T − A seconds to detect

the PU state change, the probing delay is

E[DP ] = E[T − A] =

∫ T

0

1

T
(T − x)dx =

T

2
. (2)

That is, on average periodic probing takes T /2 seconds to find

the arrival or the departure of the PU.

Next, we study the probing delay of periodic probing when

spectrum sensing is unreliable due to various reasons such

as wireless channel path loss or shadowing [5]. Specifically,

we assume that spectrum sensing can correctly detect the

presence/absence of the PU with probability p (0 < p ≤ 1) and

spectrum probes are independent. Since sensing is unreliable,

a SU may need to use multiple probes to detect the PU state

change, as shown in Figure 2. We use X to denote whether

the first probe can successfully detect the PU state change,

i.e.,

X =

{

1, first probe is successful with probability p

0, otherwise with probability 1 − p.
(3)

Using the law of total expectation, we obtain a relationship

about the probing delay:

E[DP ] = pE[DP |X = 1] + (1 − p)E[DP |X = 0]. (4)

Note that E[DP |X = 1] = T/2 from Equation (2) and

E[DP |X = 0] = E[DP ] + T . Hence, the probing delay is

E[DP ] =
T

2
+

1 − p

p
T. (5)

When p = 1, the above equation is reduced to Equation (2).

If p becomes smaller, on average a SU takes a longer time

to find the arrival/departure of the PU. Moreover, the probing

delay is proportional to probing interval T . A smaller value

of T leads to the faster detection of the PU state change, but

costs more energy. This indicates the tradeoff between probing

performance and energy consumption. Since the observations

from unreliable sensing are similar to those from reliable

sensing, in the rest of this paper we only consider the cases

when all spectrum probes are reliable.

DP=kT−Achannel

probing

ON

OFF

time0 A T kT3T2T

successful probe

unsuccessful probe

Fig. 2. Periodic probing with unreliable sensing.

B. Optimality and Conditions

Periodic probing is optimal when the following two con-

ditions are satisfied: (1) The distribution of PU state change

times is stationary, and (2) the distribution of the PU state

change time is uniform. Specifically, we prove the following

theorem on the optimality of periodic probing.

Theorem 1: Consider a PU that has a stationary distribution

of state change times over a large time interval of L, with an

expected inter-change time of 1/λ. Assume that the PU state

change time has a uniform distribution. Among all spectrum-

probing strategies that do not exploit the knowledge of the

PU and have the same average spectrum-probing interval of

T , periodic probing is the best strategy that minimizes the

probing delay.

Proof: Consider all strategies that probe the spectrum n
times in the interval [0, L]. Thus, L = nT . A periodic-probing

scheme and an arbitrary probing scheme are shown in Figure

3. For periodic probing, the probing delay is E[DP ] = T/2
from Equation (2). For an arbitrary probing scheme, the probes

are sent at times t1, t2, · · · , tn. To guarantee that all PU state

changes can be detected, tn = L. Set t0 = 0, and Ii = ti −
ti−1, where i = 1, 2, · · · , n. Note that

∑n
i=1 Ii = L. For

interval [ti−1, ti], there are λIi PU state changes. Moreover,

since the arrival of the PU state change is uniform, it takes on

average Ii/2 to detect each state change. Therefore, the sum

of probing delays in interval [ti−1, ti] is λIi · Ii/2. As there

are totally λL PU state changes, the probing delay over [0, L]
is

E[DA] =
1

λL

n
∑

i=1

1

2
λI2

i =
1

2L

n
∑

i=1

I2
i . (6)

Using the Cauchy-Schwarz inequality, we obtain

n
∑

i=1

I2
i ·

n
∑

i=1

12 ≥
(

n
∑

i=1

Ii · 1
)2

= L2. (7)

Hence, we have

E[DA] ≥ 1

2L
· L2

n
=

T

2
= E[DP ]. (8)

We emphasize that periodic probing is optimal when both

“stationary” and “uniform” conditions are satisfied. If one

of these two conditions is not met, periodic probing may

not be the best strategy that minimizes the probing delay.

We demonstrate this and derive optimal probing methods in

Sections IV and V when these two conditions are violated.
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Fig. 3. A periodic-probing scheme versus an arbitrary probing scheme.

IV. NONSTATIONARY PU STATE CHANGE TIMES

The assumption that the distribution of PU state change

times is stationary is clearly not valid. For example, a large-

scale spectrum measurement study has shown that the usage of

channels by PUs has an obvious diurnal pattern [4]. The PUs

are much more active during the daytime than late at night.

This implies that an optimal spectrum-probing strategy should

vary with time and adapt to how active PUs are. In this section,

we first derive an optimal spectrum-probing scheme when the

distribution of PU state change times is nonstationary, i.e.,

the PU state change rate varies with time. We then apply

simulations to study the performance of the optimal spectrum-

probing scheme.

A. An Optimal Spectrum-Probing Method

We assume that the “uniform” condition still holds. That

is, the arrival of PU state changes is uniform over a large

interval of L. Moreover, the time interval [0, L] is divided

into m time slots. For the i-th time slot, the time duration

is Li, and thus
∑m

i=1 Li = L. Meanwhile, the arrival rate

of PU state changes during the i-th time slot is λi. Here,

Li’s can be small so that λi’s are constant. If λi’s are all

equal, the distribution of PU state change times is stationary;

otherwise, it is nonstationary. Since for the i-th time slot both

“stationary” and “uniform” conditions hold, periodic probing

with a constant spectrum-probing interval of Ti is optimal

from Theorem 1. As a result, the probing delay in i-th time

slot is Ti/2. Moreover, as there are λiLi PU state changes,

the sum of probing delays in this time slot is λiLiTi/2. For

the entire time interval [0, L], the total number of PU state

changes is
∑m

i=1 λiLi, and therefore, the overall probing delay

is E[DN ] = (
∑m

i=1 λiLiTi/2)/(
∑m

i=1 λiLi). To minimize this

overall probing delay, Ti should be different for different time

slots that have different λi. Intuitively, when λi is larger,

Ti should be smaller to reduce the delay in detecting the

arrival/departure of the PU. That is, more energy should be

used in time slots where the PU changes its state more often.

To compare different spectrum-probing schemes, we assume

that the total energy used in [0, L] is constant. Since each

spectrum probe consumes equal energy, the constraint on total

energy consumption is equivalent to a constraint on the total

number of spectrum probes. Hence, we assume that there are

at most n probes used in time interval [0, L]. As there are

Li/Ti probes used in the i-th time slot,
∑m

i=1 Li/Ti ≤ n.

Summarizing the above problem description and constraint,

we can then formulate the following optimization problem that

finds the optimal spectrum-probing interval Ti and minimizes

the overall probing delay:

Minimize E[DN ] =

∑m
i=1 λiLiTi

2
∑m

i=1 λiLi
(9)

s.t.

m
∑

i=1

Li

Ti
≤ n, Ti ≥ 0, ∀i. (10)

The solution of this optimization problem can be found using

the theorem of Kuhn and Tucker [14], as shown in the

following theorem.

Theorem 2: Among all possible spectrum-probing strate-

gies, T ∗
j is the strategy that minimizes E[DN ] subject to

∑m
i=1 Li/Ti ≤ n, where

T ∗
j =

1

n
√

λj

m
∑

i=1

√

λiLi, j = 1, 2, · · · ,m. (11)

Proof: We construct the Lagrangian function

L(Tj ,∀j;α) =

∑m
i=1 λiLiTi

2
∑m

i=1 λiLi
− α

(

n −
m

∑

i=1

Li

Ti

)

. (12)

Using the theorem of Kuhn and Tucker, we differentiate

function L(Tj ,∀j;α) with respect to Tj , set the result equal

to zero, and obtain

Tj =

√

2α
∑m

i=1 λiLi

λj
. (13)

Similarly, the theorem of Kuhn and Tucker yields

α
∂L(Tj ,∀j;α)

∂α = 0, which leads to α = 0 or
∑m

i=1 Li/Ti = n.

Note that α cannot be zero. Otherwise, Tj = 0, and
∑m

i=1 Li/Ti is unbounded. Therefore, putting Equation (13)

into
∑m

i=1 Li/Ti = n, we find

α =

(
∑m

i=1

√
λiLi

)2

2n2
∑m

i=1 λiLi
, (14)

which leads to Equation (11).

Since
∂2L
∂T 2

j

(T ∗
j ,∀j; α) = 2α

Lj

T ∗
j

3 ≥ 0, (15)

T ∗
j is the optimal strategy that minimizes E[DN ].
From Theorem 2, we have the following observations:

• When the distribution of PU state change times is sta-

tionary, i.e., λ1 = λ2 = · · · = λm, according to Equation

(11), T ∗
1 = T ∗

2 = · · · = T ∗
m = L/n, i.e., periodic probing

is the optimal scheme.

• When L1 = L2 = · · · = Lm = L/m, the optimal

probing strategy is T ∗
j =

L
∑ m

i=1

√
λi

mn
√

λj

.

• If λi > λj , from Equation (11) we find that T ∗
i < T ∗

j .

That is, the optimal probing scheme probes the spectrum

more frequently for the time intervals with higher PU

state change rates.

• If periodic probing is applied, i.e., Ti = L/n, ∀i, the

probing delay is E[DP ] = L/(2n). On the other hand,

if the optimal probing strategy is applied, we derive the
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Fig. 4. Probing delay when the distribution of PU state change times is nonstationary (L = 1 day and m = 24).

probing delay by putting Equation (11) into Equation (9)

and find

E[DN ] =

(
∑m

i=1

√
λiLi

)2

2n
∑m

i=1 λiLi
. (16)

Note that the Cauchy-Schwarz inequality yields

(

m
∑

i=1

√

λiLi

)2

≤
(

m
∑

i=1

λiLi

)(

m
∑

i=1

Li

)

. (17)

Hence, we find a relationship between E[DN ] and E[DP ]:

E[DN ] ≤ L

2n
= E[DP ]. (18)

This indicates that the optimal probing scheme can

achieve a shorter probing delay than periodic probing.

B. Performance Evaluation

We apply simulations to evaluate the performance of peri-

odic probing and optimal probing schemes. In our simulations,

we assume the total duration of one day (i.e., L = 1 day)

and 24 time slots of equal duration (i.e., m = 24 and

L1 = L2 = · · · = L24 = 1 hour). To study λi’s with both

stationary and nonstationary distributions, we assume

λi = λ1a
i−1, i = 1, 2, · · · , 24. (19)

When a = 1, all λi’s are equal, and the distribution of PU

state change times is stationary. Otherwise, the distribution is

nonstationary. Moreover, when a < 1 and a is smaller, the

distribution is more skewed. Parameter λ1 is used to control

the average arrival rate over [0, L]. In this way, we can use λ1

and a to design different distributions of arrival rates of PU

state changes. To generate the events of PU state changes, we

assume that the PU arrival process is Poisson. That is, the inter-

arrival times of the PU in time slot i follow an exponential

distribution with mean 1/λi. Specifically, we apply the inverse

transform method to generate a nonhomogeneous Poisson

process for PU states [12]. If a PU state change occurs at

time t in the time slot i, then the next PU state change will

happen at t + X , where X = − ln(U)/λi and U is a uniform

random variable over [0, 1]. According to Theorem 2.3.1 in

[11], if there are k arrivals in a time slot, these k arrival times

have the same distribution as the order statistics corresponding

to k independent random variables uniformly distributed on

this time slot. Therefore, the “uniform” condition holds for

the Poisson process in each time slot. For periodic probing

with n samples, the spectrum is probed at times i · (L/n),
i = 1, 2, · · · , n. For optimal probing, the probing interval in

each time slot is obtained from Equation (11).

Figure 4 shows the probing delay when the PU state change

times are nonstationary. Each point of simulation results is the

average of 105 independent runs. From the theoretical analysis,

the probing delay of periodic probing is E[DP ] = L/(2n),
whereas the probing delay of optimal probing is obtained

from Equation (16). Figure 4(a) compares the probing delay

of optimal probing with that of periodic probing when λ1 = 1
/min, a = 0.8, and the average probing interval varies from 1 s

to 10 s. It can be seen that the theoretical and simulation results

for both probing schemes are (almost) identical. Moreover,

the optimal probing scheme performs much better than the

periodic probing method. For example, to achieve a probing

delay of 2 s, periodic probing uses 21,603 samples over

one day, whereas optimal probing needs only 14,396 probes.

This means that compared with periodic probing, the optimal

scheme can have an energy saving of 33%.

Next, we study the effect of parameters λ1 and a on both

probing schemes. Through extensive simulations, we find that

λ1 and a do not affect the probing delay of periodic probing.

In all cases, both theoretical and simulation results of periodic

probing are equal to L/(2n). Figure 4(b) shows the probing

delay of the optimal probing scheme when λ1 = 1 /min

and a = 1, 0.8, or 0.6. It can be seen that when a = 1,

the distribution of PU state change times becomes stationary.

Thus, the probing delay is L/(2n), and the optimal scheme

is indeed periodic probing. Moreover, when a decreases, the

distribution of PU state change times is more skewed, and

optimal probing with the same number of samples can further

reduce the probing delay. Figure 4(b) also demonstrates that

when a = 0.6, the simulation results have a slightly higher

probing delay than the theoretical results. This is because in

this case (i.e., λ1 = 1 /min and a = 0.6), the generated arrival

rates of PU state changes in some time slots are so small in



simulations that some generated arrival rates may deviate from

the predetermined arrival rates in Equation (19). To verify our

explanation, we keep a = 0.6 and vary λ1 (i.e., λ1 = 1, 3,

and 6 /min) in Figure 4(c). From Equation (16), it can be seen

that λ1 does not affect the probing delay of optimal probing

in theory. When λ1 increases, however, the generated arrival

rates in simulations better match the predetermined ones, and

the simulation results are closer to the theoretical results.

V. NONUNIFORM PU CHANNEL OCCUPANCY/VACANCY

DISTRIBUTIONS

The assumption that the PU channel occupancy/vancancy

distribution (i.e., the PU state change time) is uniform may not

be valid. To simplify the analysis, many works have assumed

that such a distribution is exponential [8], [9]. On the other

hand, measurement studies have demonstrated that the real

distribution does not have the memoryless property and may

not be exponential [17], [4]. Therefore, in this section we study

the optimal spectrum-probing schemes when the PU channel

occupancy/vacancy distribution is either exponential or non-

exponential (e.g., Pareto-distributed). From the view of infor-

mation obtained by a SU, the PU channel occupancy/vacancy

distribution contains much more information than the arrival

rates of PU state changes. Hence, the optimal scheme should

be very different from that proposed in the previous section.

However, the underlying principle for optimal probing is the

same, i.e., to reduce the probing delay a smart SU should

probe the spectrum more frequently when the PU changes its

state with a higher probability.

A. Problem Formulation

We use fY (y) to denote the PU channel occupancy/vacancy

distribution and assume that fY (y) 6= 0 only for 0 ≤ y ≤ L.

That is, a PU state change would occur during time interval

[0, L], and
∫ L

0
fY (y)dy = 1. We assume that a SU has learned

fY (y) beforehand and known the starting time of the last PU

state change. The problem is how the SU can efficiently probe

the spectrum to reduce the delay of detecting the next PU state

change. As in Section IV, we assume that the total energy

for spectrum probing in [0, L] is constant, and thus, the total

number of spectrum probes is at most n. Figure 5 shows an ex-

ample of fY (y) and a spectrum-probing scheme, where probes

are sent at time instants t1, t2, · · · , tn and tn = L. Set t0 = 0.

If the PU state change occurs at time y, where y ∈ (ti−1, ti]
(i = 1, 2, · · · , n), then the delay for the probing scheme to

detect the change is ti − y. Therefore, the overall probing

delay over [0, L] is E[DY ] =
∑n

i=1

∫ ti

ti−1
(ti − y)fY (y)dy.

Summarizing the above problem description and constraint,

we formulate the following optimization problem that finds

the optimal spectrum-probing scheme (i.e., ti’s):

Minimize E[DY ] =

n
∑

i=1

∫ ti

ti−1

(ti − y)fY (y)dy (20)

s.t.

∫ L

0

fY (y)dy = 1, (21)

where 0 = t0 ≤ t1 ≤ · · · ≤ tn = L.

t2 t4t1t0 =0 timet3 tn =L

f
Y

(y)

probing

yL0

PU channel occupancy/vacancy distribution

Fig. 5. An example of fY (y) and a spectrum-probing scheme.

Using the theorem of Lagrange [14], we find a recursive

relationship of the optimal ti’s in the following theorem:

Theorem 3: Among all possible spectrum-probing strate-

gies, t∗i is the strategy that minimizes E[DY ], where

n
∑

i=1

∫ t∗i

t∗
i−1

fY (y)dy = 1 (22)

t∗i+1 = t∗i +
1

fY (t∗i )

∫ t∗i

t∗
i−1

fY (y)dy, (23)

where i = 1, 2, · · · , n − 1.

Proof: Note that [0, L] = [t0, t1]∪ [t1, t2]∪· · ·∪ [tn−1, tn]
and [ti−1, ti]∩ [tj−1, tj ] = ∅ for i 6= j and 1 ≤ i, j ≤ n. Thus,

Equation (22) is the direct extension from Equation (21). Next,

we construct the Lagrangian function

L(ti,∀i; α) =
n

∑

i=1

∫ ti

ti−1

(ti − y)fY (y)dy +

α

(

n
∑

i=1

∫ ti

ti−1

fY (y)dy − 1

)

. (24)

Using the theorem of Lagrange, we differentiate function

L(ti,∀i; α) with respect to ti, set the result equal to zero,

and thus obtain Equation (23).

Although Theorem 3 does not provide a closed-form expres-

sion for the optimal solution, it gives ways to calculate t∗i ’s

numerically to find the optimal probing scheme. Specifically,

one way is that from Equation (23), t∗2, t
∗
3, · · · , t∗n can be

expressed by t∗1 recursively. Since t∗n = L, t∗1 can be found,

and so can t∗2, t
∗
3, · · · , t∗n−1. The following example shows

another way to derive the optimal probing scheme.

Example (Uniform Distribution): If the PU channel occu-

pancy/vacancy distribution is uniform over [0, L],

fY (y) =

{

1
L , 0 ≤ y ≤ L

0, otherwise.
(25)

Putting fY (y) into Equation (23), we find

t∗i+1 − t∗i = t∗i − t∗i−1, 1 ≤ i ≤ n − 1. (26)



Since
∑n

i=1(t
∗
i − t∗i−1) = L,

t∗i − t∗i−1 =
L

n
, i = 1, 2, · · · , n. (27)

That is, the periodic probing scheme is the best strategy that

minimizes the probing delay, which confirms Theorem 1.

On the other hand, if the PU channel occupancy/vacancy

is not uniform, it is clear that the optimal spectrum-probing

method is not periodic. In the following, we specifically

study the optimal probing scheme when the PU channel

occupancy/vacancy distribution is a truncated exponential dis-

tribution or a truncated Pareto distribution over [0, L] by

applying Theorem 3.

B. Truncated Exponential Distribution

If a PU channel occupancy/vacancy distribution is a trun-

cated exponential distribution with parameter λ over [0, L],

fY (y) =

{

λe−λy

1−e−λL , 0 ≤ y ≤ L

0, otherwise.
(28)

Applying Theorem 3, we have that when 1 ≤ i ≤ n − 1,

t∗i+1 − t∗i =
1

λ

[

eλ(t∗i −t∗i−1) − 1
]

. (29)

Putting Equations (28) and (29) into Equation (20), we can

obtain the probing delay of the optimal probing scheme

E[DY ] =
t∗1

1 − e−λL
− e−λL

λ(1 − e−λL)

[

eλ(L−t∗n−1) − 1
]

. (30)

Setting x∗
i = λ(t∗i − t∗i−1), we find from Equation (29) that

{

x∗
i = ln(1 + x∗

i+1), i = 1, 2, · · · , n − 1
∑n

i=1 x∗
i = λL.

(31)

By solving x∗
i ’s numerically, we can obtain the optimal

spectrum-probing scheme (i.e., t∗i ’s). Note that x∗
i = ln(1 +

x∗
i+1) ≤ x∗

i+1, i.e.,

t∗i − t∗i−1 ≤ t∗i+1 − t∗i . (32)

Hence, the optimal solution requires a SU to probe more

frequently at the early stage of [0, L].
To numerically find the solution to Equation (31), we apply

the binary search method. The algorithm is given in Algorithm

1, where ∆ is a small number that controls the accuracy of

the solution.

By applying Algorithm 1, we can find the optimal probing

strategy. Figure 6 shows the index of probing intervals (i.e.,

i) versus the probing interval (i.e., ti − ti−1) for both the

optimal probing scheme and the periodic probing scheme. In

this experiment, we use a total duration of 1,500 seconds (i.e.,

L = 1, 500 s) and a total of 100 probes (i.e., n = 100). For

the optimal scheme, we set ∆ = 0.001. To study the effect

of λ on the optimal probing method, we construct two cases

based on the probability of the original exponential distribution

over [0, L], i.e., 1 − e−λL. Specifically, we consider when

such a probability is 0.99 and 0.99999, i.e., λL = 2 ln(10)
and λL = 5 ln(10). From Figure 6, we can see that whereas

Algorithm 1 Finding x∗
i ’s in Equation (31)

Input: λ, L, n, and ∆
Output: x∗

i , i = 1, 2, · · · , n

Set found = 0; lower = 0; upper = λL/n
while found = 0 do

x∗
1 = (lower + upper)/2

for i = 2 to n do

x∗
i = exp(x∗

i−1) − 1
end for

if |∑n
i=1 x∗

i − λL| < ∆ then

found = 1

else if
∑n

i=1 x∗
i > λL then

upper = x∗
1

else

lower = x∗
1

end if

end while

periodic probing uses a constant probing interval, the optimal

scheme increases the probing interval with time. Moreover, if

λ increases, the optimal probing strategy uses a more skewed

distribution of probing intervals, and samples the spectrum

more frequently at the early stage of [0, L] and less frequently

at the late stage.

We further apply simulations to calculate the probing de-

lay of both periodic probing and optimal probing schemes.

Specifically, we use the inverse transform method and the

rejection method to generate the truncated exponential random

variable [12]. That is, first generate a uniform random variable

among [0, 1], which is denoted by U . Then, X = − ln(U)/λ
is an exponential random variable with rate λ. If X ≤ L,

the value of X is accepted (i.e., Y = X); otherwise, it is

rejected, and the procedure repeats. For each generated Y ,

if a probing scheme samples the spectrum at time instant ti
(i = 1, 2, · · · , n) and Y ∈ (ti, ti+1], then the probing delay

is calculated as ti+1 − Y . To obtain an accurate estimate

of the probing delay, we independently run the simulation

105 times for each probing scheme and obtain the average.

Figure 7 compares the simulated probing delay of periodic

probing with that of the optimal scheme when L = 1, 500
s, ∆ = 0.001, λ = 2 ln(10)/L or λ = 5 ln(10)/L, and n
varies from 100 to 1,500. This figure also plots the theoretical

probing delay of the optimal scheme from Equation (30),

which is shown to overlap with the simulated probing delay.

Since the average probing interval is equal to L/n, the average

probing interval varies from 1 s to 15 s. Figure 7 shows

some interesting results. First, for both probing schemes,

the probing delay increases almost linearly with the average

probing interval. This again indicates the tradeoff between

energy consumption and probing performance. Second, while

λ affects the periodic probing scheme little, it has a significant

effect on the optimal probing scheme. Specifically, if λ is

larger, i.e., the PU changes its state faster, the reduction in

the probing delay by the optimal scheme is more significant.
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a truncated exponential distribution (L = 1, 500 s and ∆ = 0.001).

Third, the optimal probing scheme performs much better

than the periodic probing scheme. For example, to achieve

a probing delay of 2 s, periodic probing requires about 377

samples over [0, L], whereas optimal probing uses only 268

and 133 samples for λ = 2 ln(10)/L and λ = 5 ln(10)/L,

respectively. This means that the energy savings are 29%

and 65% if we switch the spectrum-probing method from the

periodic probing scheme to the optimal probing scheme.

C. Truncated Pareto Distribution

If a PU channel occupancy/vacancy distribution is a trun-

cated Pareto distribution with parameter β over [0, L],

fY (y) =

{

βyβ
m

γyβ+1 , ym ≤ y ≤ L

0, otherwise.
(33)

where γ = 1 − (ym/L)β . Since fY (y) = 0 for time interval

[0, ym], a SU only probes during [ym, L], and thus t∗0 = ym.

Applying Theorem 3, we have

t∗i+1 = t∗i +
t∗i
β

[

(

t∗i
t∗i−1

)β

− 1

]

, (34)

where i = 1, 2, · · · , n−1. Since t∗0 = ym and t∗n = L, t∗i ’s can

be obtained numerically. Similar to Algorithm 1, we can also

apply the binary search method to numerically find the value

of t∗1 and then all t∗i ’s. Moreover, putting Equations (33) and

(34) into Equation (20), we can obtain the theoretical probing

delay of the optimal probing scheme

E[DY ] =
yβ

m

γ

n
∑

i=1

t∗i

(

t∗−β
i−1 − t∗−β

i

)

−βym

[

1 − (ym/L)β−1
]

γ(β − 1)
.

(35)

Figure 8 shows an example on the probing intervals for

both periodic probing and optimal probing schemes when L =
1, 500 s, ym = 50 s, n = 100, and ∆ = 0.001. Since the

probability of the original Pareto distribution over [0, L] is

γ = 1 − (ym/L)β , we consider two cases of β: γ = 0.9
or 0.999, i.e., β = 0.677 or β = 2.031. From Figure 8, it

can be seen that when β increases (i.e., the truncated Pareto

distribution is more skewed), the optimal scheme has also a

more skewed distribution of probing intervals, and probes the

spectrum more frequently at the early stage of [ym, L] and less

frequently at the late stage.

Next, we apply simulations to study the probing delay when

the PU channel occupancy/vacancy distribution is a truncated

Pareto distribution. We again use the inverse transform method

and the rejection method to generate the truncated Pareto

distribution. That is, X = ym/(U1/β), where U is a uniform

random variable over [0, 1]. Then, X is a Pareto random

variable with parameter β. If X ≤ L, then Y = X; otherwise,

X is rejected, and the new value of X is generated. Figure

9 compares the performance of optimal probing with that of

periodic probing when L = 1, 500 s, ym = 50 s, ∆ = 0.001,

and the average probing interval varies from 1 s to 29 s. Each

point is the average of 105 independent runs. It can be seen

that the simulation results overlap with the theoretical results

from Equation (35). It can also be seen that the optimal scheme

performs much better than periodic probing. For example, to

achieve a probing delay of 2 s, periodic probing uses about 372

samples over [ym, L], whereas optimal probing requires only

200 and 67 probes for β = 0.677 or β = 2.031, respectively.

It means that the energy can be significantly saved by 46%

and 82%.

VI. RELATED WORK

Spectrum sensing in cognitive radio networks is an active re-

search topic. For example, many physical and MAC spectrum-

sensing techniques have been designed, such as energy de-

tection, matched filter detection, and cyclostationary feature

detection [1], [18]. Some mechanisms have been proposed

to optimize the tradeoff between sensing and transmission

[15], [2], [6]. Moreover, efficient methods of sensing multiple

channels have been studied in [7], [8]. Different from the

previous works, in this paper we focus on the metric of the



0 20 40 60 80 100
10

−1

10
0

10
1

10
2

10
3

 Index of probing intervals

 P
ro

b
in

g
 i
n
te

rv
a
l 
(s

e
c
o
n
d
s
)

 Optimal probing (β = 0.677)

 Optimal probing (β = 2.031)

 Periodic probing

Fig. 8. Distribution of probing intervals when a PU channel occu-
pancy/vacancy distribution is a truncated Pareto distribution (L = 1, 500
s, ym = 50 s, n = 100, and ∆ = 0.001).

0 5 10 15 20 25 30
0

5

10

15

20

25

 Average probing interval (seconds)

 P
ro

b
in

g
 d

e
la

y
 (

s
e
c
o
n
d
s
)

 Optimal probing (β = 0.677) (simulation)

 Optimal probing (β = 0.677) (theory)

 Periodic probing (β = 0.677) (simulation)

 Optimal probing (β = 2.031) (simulation)

 Optimal probing (β = 2.031) (theory)

 Periodic probing (β = 2.031) (simulation)

Fig. 9. Probing delay when a PU channel occupancy/vacancy distribution is
a truncated Pareto distribution (L = 1, 500 s, ym = 50 s, and ∆ = 0.001).

probing delay, i.e., the average delay with which a SU can

detect a PU channel state change. The study of this metric can

potentially make SUs more sensitive to dynamic environments,

actively avoiding the harmful interference to the transmission

of PUs and effectively exploiting the available channels.

Probing techniques have been widely used in wireline and

wireless networks. For example, different probing methods

have been applied in estimating the performance of the Internet

[10], [13]. Moreover, optimal contact-probing strategies have

been designed to minimize the contact missing probability

in delay-tolerant networks [16]. Inspired by these works, we

study the optimal spectrum-probing mechanisms that minimize

the probing delay in cognitive radio networks.

VII. CONCLUSIONS

In this paper, we attempt to provide a theoretical framework

on the optimal spectrum-probing strategy that minimizes the

probing delay given a constraint on energy consumption.

We have emphasized the conditions under which the widely

used periodic probing is optimal. That is, if the “stationary”

condition or the “uniform” condition is not met, periodic

probing may not be the best probing strategy. We have then

derived optimal probing methods when the distribution of

PU state change times is nonstationary or the PU channel

occupancy/vacancy follows an arbitrary distribution. Our sim-

ulation results have shown that given a constraint on the prob-

ing delay, the proposed optimal spectrum-probing strategies

perform much better than periodic probing in saving energy.

As part of our ongoing work, we are studying how a SU can

accurately estimate E[Y ] or fY (y), while probing the spectrum

using periodic probing or optimal probing strategies.
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