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Abstract— This work investigates three aspects: (a) a network
vulnerability as the non-uniform vulnerable-host distribution, (b)
threats, i.e., intelligent worms that exploit such a vulnerability,
and (c) defense, i.e., challenges for fighting the threats. We first
study five data sets and observe consistent clustered vulnerable-
host distributions. We then present a new metric, referred to as
the non-uniformity factor, which quantifies the unevenness of a
vulnerable-host distribution. This metric is essentially the Renyi
information entropy and better characterizes the non-uniformity
of a distribution than the Shannon entropy. We then analytically
and empirically measure the infection rate and the propagation
speed of network-aware worms. We show that a representative
network-aware worm can increase the spreading speed by exactly
or nearly a non-uniformity factor when compared to a random-
scanning worm at the early stage of worm propagation. This
implies that when a worm exploits an uneven vulnerable-host
distribution as a network-wide vulnerability, the Internet can
be infected much more rapidly. Furthermore, we analyze the
effectiveness of defense strategies on the spread of network-aware
worms. Our results demonstrate that counteracting network-
aware worms is a significant challenge for the strategies that
include host-based defense and IPv6.

I. INTRODUCTION

Worm scanning has become more and more sophisticated
since the initial attacks of Internet worms. Most of the real,
especially “old” worms, such as Code Red [12], Slammer
[13], and latter Witty [19], exploit naive random scanning that
chooses target IP addresses uniformly and does not use any
information on network vulnerabilities. Advanced scanning
methods, however, have been developed that take the IP
address structure into consideration. One example is routable
scanning that selects targets only in the routable address space,
using the information provided by the BGP routing table
[23], [26]. Another example is evasive worms that exploit
lightweight sampling to obtain the knowledge of live subnets
of the address space and spread only in these networks [16].

This work focuses on a class of network-aware worms. Such
worms exploit the information on the highly uneven distri-
butions of vulnerable hosts. The vulnerable-host distributions
have been observed to be bursty and spatially inhomogeneous
by Barford et al. [1]. A non-uniform distribution of Witty-
worm victims has been reported by Rajab et al. [15]. We have
also found that a Web-server distribution is non-uniform in the
IP address space [6]. These discoveries suggest that vulnerable
hosts and Web servers may be “clustered” (i.e., non-uniform).
The clustering/non-uniformity makes the network vulnerable
since if one host is compromised in a cluster, the rest may be
compromised rather quickly.

In our prior work, we have studied a class of “worst-case”
worms, called importance-scanning worms, which exploit

non-uniform vulnerable-host distributions [6], [5]. Importance
scanning is developed from and named after importance sam-
pling in statistics. Importance scanning probes the Internet
according to an underlying vulnerable-host distribution. Such
a scanning method forces worm scans on the most relevant
parts of an address space and supplies the optimal strategy1.
Importance scanning thus provides a “what-if” scenario: When
there are many ways for intelligent worms to exploit such
a vulnerability, importance scanning is a worst-case threat-
model. Hence, importance scanning can serve as a benchmark
for studying real worms.

Are there any real network-aware worms? Code Red II
and Nimda worms have used localized scanning [28], [29].
Localized scanning preferentially searches for vulnerable hosts
in the “local” address space. The Blaster worm has used
sequential scanning in addition to localized scanning [31].
Sequential scanning searches for vulnerable hosts through
their closeness in the IP address space. It is not well under-
stood, however, how to characterize the relationships between
vulnerable-host distributions and these network-aware worms.

What has been observed is that real network-aware and
importance-scanning worms spread much faster than random-
scanning worms [15], [6]. This shows the importance of the
problem. Does there exist a generic characteristic across dif-
ferent vulnerable-host distributions? If so, how do intelligent
worms exploit such a vulnerability, and how can we defend
against such worms?

Our goal is to investigate such a generic characteristic in
vulnerable-host distributions, to quantify its relationship with
network-aware worms, and to understand the effectiveness of
defense strategies. In particular, we would like to answer the
following questions:

• How to quantify the non-uniformity of a vulnerable-host
distribution by a simple metric?

• How to measure the spreading ability of network-aware
worms quantitatively?

• How to relate vulnerable-host distributions with network-
aware worm spreading ability?

• What are the challenges to defense strategies on slowing
down the spread of a network-aware worm?

To answer these questions, we first observe, from five
measurement sets, common characteristics of non-uniform
vulnerable-host distributions. We then derive a new metric as
the non-uniformity factor to characterize the non-uniformity of
a vulnerable-host distribution. A larger non-uniformity factor

1Hitlist scanning [21] can be regarded as a special case of importance
scanning when the complete information of vulnerable hosts is known.



reflects a more non-uniform distribution of vulnerable hosts.
We obtain the non-uniformity factors from the data sets on
vulnerable-host distributions and show that all data sets have
large non-uniformity factors. Moreover, the non-uniformity
factor is a function of the Renyi entropy, a generalized entropy,
of order two [17]. We show that the non-uniformity factor
better characterizes the unevenness of a distribution than the
Shannon entropy. Therefore, in view of information theory, the
non-uniformity factor provides a quantitative measure of the
unevenness/uncertainty of a vulnerable-host distribution.

Next, we analyze the spreading speed of network-aware
worms, especially at an early stage. A worm that spreads
faster at the early stage can in general infect most of the
vulnerable hosts in a shorter time. The propagation ability
of a worm at the early stage is characterized by the in-
fection rate [26]. Therefore, we derive the infection rates
of network-aware worms. We find that the infection rates
of representative network-aware worms can be represented
explicitly as a function of the non-uniformity factor. For
example, localized scanning can increase the infection rate by
nearly a non-uniformity factor, comparing to random scanning.
Thus, the spreading speed of localized scanning can approach
the capacity of suboptimal importance scanning [6]. These
analytical results on the relationships between vulnerable-host
distributions and network-aware worm spreading ability are
validated by simulation. Furthermore, to show the generality
of our approach, we study sequential scanning. We demon-
strate that a combination of sequential scanning and random
scanning can increase the infection rate significantly.

Finally, we study new challenges to worm defense posed
by network-aware worms. Using the non-uniformity factor, we
show quantitatively that the host-based defense strategies, such
as proactive protection [3] and virus throttling [22], should
be deployed at almost all hosts to slow down network-aware
worms at the early stage. A partial deployment would nearly
invalidate such host-based defense. Moreover, we demonstrate
that the infection rate of a network-aware worm in the IPv6
Internet can be comparable to that of the Code Red v2 worm
in the IPv4 Internet. Therefore, fighting network-aware worms
is a real challenge.

The remainder of this paper is structured as follows. Sec-
tion II presents our collected data sets. Sections III and
IV introduce a new metric called the non-uniformity factor
and compare this metric to the Shannon entropy. Sections V
and VI characterize the spreading ability of network-aware
worms through theoretical analysis and simulations. Section
VII further studies the effectiveness of defense strategies on
network-aware worms. Section VIII concludes this paper.

II. MEASUREMENTS AND VULNERABLE-HOST

DISTRIBUTION

How significant is the unevenness of vulnerable-host distri-
butions? To answer this question, we study five data sets.

A. Measurements

DShield (D1): DShield collects intrusion detection system
(IDS) logs [30]. Specifically, DShield provides the information

of vulnerable hosts by aggregating logs from more than 1,600
IDSes distributed throughout the Internet. We further focus on
the following ports that were attacked by worms: 80 (HTTP),
135 (DCE/RPC), 445 (NetBIOS/SMB), 1023 (FTP servers and
the remote shell attacked by W32.Sasser.E.Worm), and 6129
(DameWare).

iSinks (P1 and C1): Two unused address space monitors
run the iSink system [24]. The monitors record the unwanted
traffic arriving at the unused address spaces that include a
Class A network (referred to as “Provider” or P1) and two
Class B networks at the campus of the University of Wisconsin
(referred to as “Campus” or C1) [1].

Witty-worm victims (W1): A list of Witty-worm victims is
provided by CAIDA [19]. CAIDA used a network telescope
with approximate 224 IP addresses to log the traffic of Witty-
worm victims that are Internet security systems (ISS) products.

Web-server list (W2): IP addresses of Web servers were
collected through UROULETTE (http://www.uroulette.com/).
UROULETTE provides a random uniform resource locator
(URL) generator to obtain a list of IP addresses of Web servers.

The first three data sets (D1, P1, and C1) were collected
over a seven-day period from 10-16 December 2004 and have
been studied in [1] to demonstrate the bursty and spatially in-
homogeneous distribution of (malicious) source IP addresses.
The last two data sets (W1 and W2) have been used in our
prior work [6] to show the virulence of importance-scanning
worms. The summary of our data sets is given in Table I.

TABLE I

SUMMARY OF THE DATA SETS.

Trace Description # of unique source addresses
D1 DShield 7,694,291
P1 Provider 2,355,150
C1 Campus 448,894

W1 Witty-worm victims 55,909
W2 Web servers 13,866

B. Vulnerable-Host Distribution

To obtain vulnerable-host group distributions, we use the
classless inter-domain routing (CIDR) notation [11]. The In-
ternet is partitioned into subnets according to the first l bits
of IP addresses, i.e., /l prefixes or /l subnets. In this division,
there are 2l subnets, and each subnet contains 232−l addresses,
where l ∈ {0, 1, · · · , 32}. For example, when l = 8, the
Internet is grouped into Class A subnets (i.e., /8 subnets); when
l = 16, the Internet is partitioned into Class B subnets (i.e.,
/16 subnets).

We plot the complementary cumulative distribution func-
tions (CCDF) of our collected data sets in /8 and /16 subnets
in Figure 1 in log-log scales. CCDF is defined as the faction
of the subnets with the number of hosts greater than a given
value. Figure 1(a) shows population distributions in /8 subnets
for D1, P1, C1, W1, and W2, whereas Figure 1(b) exhibits
host distributions in /16 subnets for D1 with different ports
(80, 135, 445, 1023, and 6129). Figure 1 demonstrates a
wide range of populations, indicating highly inhomogeneous
address structures. Specifically, the relatively straight lines,
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Fig. 1. CCDF of collected data sets.

such as W2 and D1-135, imply that vulnerable hosts follow
a power law distribution. Similar observations were given in
[1], [15], [14], [12], [13], [6].

Why is the vulnerable-host distribution non-uniform in the
IPv4 address space? First, no vulnerable hosts can exist in
reserved or multicast address ranges [32]. Second, different
subnet administrators make different use of their own IP
address space. Third, a subnet intends to have many computers
with the same operating systems and applications for easy
management [20], [4]. Last, some subnets are more protected
than others [1], [15].

How can we quantify the non-uniformity of a vulnerable-
host distribution? One way is to use the population distribution
such as CCDF plotted in Figure 1. But it is complex to
compare the unevenness of two distributions.

III. NON-UNIFORMITY FACTOR

In this section, we derive a simple metric, called the
non-uniformity factor, to quantify the non-uniformity of a
vulnerable-host distribution.

A. Definition and Property

Let p
(l)
g (i) (i = 1, 2, · · · , 2l) denote the group distribution

of vulnerable hosts in /l subnets. Let N
(l)
i be the number of

vulnerable hosts in /l subnet i and N be the total number
of vulnerable hosts. Then, p

(l)
g (i) = N

(l)
i

N , which is the ratio
between the number of vulnerable hosts in group i and the total
number of vulnerable hosts. It is noted that

∑2l

i=1 p
(l)
g (i) = 1

and
∑2l

i=1 N
(l)
i = N .

Definition: The non-uniformity factor in /l subnets is de-
fined as

β(l) = 2l
2l∑

i=1

(
p(l)

g (i)
)2

. (1)

It is noted that

β(l) ≥

 2l∑

i=1

p(l)
g (i)




2

= 1. (2)

The above inequality is derived by the Cauchy-Schwarz in-
equality. The equality holds if and only if p

(l)
g (i) = 2−l, for

i = 1, 2, · · · , 2l. In other words, when the vulnerable-host
distribution is uniform, β(l) achieves the minimum value 1.
On the other hand, since p

(l)
g (i) ≥ 0,

β(l) ≤ 2l ·

 2l∑

i=1

p(l)
g (i)




2

= 2l. (3)

The equality holds when p
(l)
g (j) = 1 for some j and

p
(l)
g (i) = 0, i �= j, i.e., all vulnerable hosts concentrate on

one subnet. This means that when the vulnerable-host distri-
bution is extremely non-uniform, β(l) obtains the maximum
value 2l. Therefore, β(l) characterizes the non-uniformity of
a vulnerable-host distribution. A larger non-uniformity factor
reflects a more non-uniform distribution of vulnerable hosts.

How does β(l) vary with l? When l = 0, β(0) = 1. In the
other extreme where l = 32,

p(32)
g (i) =

{
1
N , address i is vulnerable to the worm;
0, otherwise,

(4)
which results in β(32) = 232

N . More importantly, β(l) is a non-
decreasing function of l, as shown below.

Theorem 1: If l > r, β(l) ≥ β(r), where l, r ∈
{0, 1, · · · , 32}.

PROOF: Let k = l−r. Group i (i = 1, 2, · · · , 2r) of /r subnets
is partitioned into groups 2k · (i− 1) + 1, 2k · (i− 1) + 2, · · · ,
2k · (i − 1) + 2k of /l subnets. Thus,

p(r)
g (i) =

2k∑
j=1

p(l)
g (2k · (i − 1) + j), i = 1, 2, · · · , 2r. (5)



Then, β(l) is related to β(r) by the Cauchy-Schwarz inequality.

β(l) = 2r
2r∑

i=1





 2k∑

j=1

12





 2k∑

j=1

(
p(l)

g (2k · (i − 1) + j)
)2







≥ 2r
2r∑

i=1


 2k∑

j=1

p(l)
g (2k · (i − 1) + j)




2

= β(r). (6)

The equality holds when p
(l)
g (2k · (i − 1) + j) = p(r)

g (i)

2k , j =
1, 2, · · · , 2k, i = 1, 2, · · · , 2r. That is, in each /r subnet, the
vulnerable hosts are uniformly distributed in 2k groups.

An intuitive explanation of this theorem is as follows. For
/l and /(l +1) subnets, group i (i = 1, 2, · · · , 2l) of /l subnets
is partitioned into groups 2i − 1 and 2i of /(l + 1) subnets.
If vulnerable hosts in each group of /l subnets are equally
divided into groups of /(l + 1) subnets (i.e., p

(l+1)
g (2i − 1) =

p
(l+1)
g (2i) = 1

2p
(l)
g (i), ∀ i), then β(l+1) = β(l). Otherwise, if

the division of vulnerable hosts is uneven for a group (i.e.,
p
(l+1)
g (2i − 1) �= p

(l+1)
g (2i), ∃ i), then β(l+1) > β(l).

B. Estimated Non-Uniformity Factor

Figure 2 shows the non-uniformity factors estimated from
our data sets. The non-uniformity factors increase with the
prefix length for all data sets. The y-axis is in a log scale.
Thus, β(l) increases almost exponentially with a wide range
of l. To gain intuition on how large β(l) can be, β(8) and
β(16) are summarized for all data sets in Table II. We observe
that β(8) and β(16) have large values, indicating the significant
unevenness of collected distributions.

TABLE II

β(8) AND β(16) OF COLLECTED DISTRIBUTIONS.

β(l) D1 P1 C1 W1 W2
β(8) 7.9 8.4 9.0 12.0 7.8

β(16) 31.2 43.2 52.2 126.7 50.2

β(l) D1-80 D1-135 D1-445 D1-1023 D1-6129
β(8) 7.9 15.4 10.5 48.2 9.1

β(16) 153.3 186.6 71.7 416.3 128.9

IV. ENTROPY AND NON-UNIFORMITY FACTOR

It is well-known that the Shannon entropy can be used to
measure the non-uniformity of a distribution [8]. Why do we
choose the non-uniformity factor instead?

Consider a general entropy, called the Renyi entropy [17],
which is defined as

Hq

(
P (l)

)
=

1
1 − q

log2

2l∑
i=1

(
p(l)

g (i)
)q

, for q �= 1, (7)

where P (l) = {p(l)
g (1), p(l)

g (2), · · · , p
(l)
g (2l)}. The non-

uniformity factor can relate to the Renyi entropy of order two
in the following equation:

β(l) = 2l−H2(P (l)). (8)
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Fig. 2. Non-uniformity factors of collected data sets. The y-axis uses a log
scale.

Thus, the non-uniformity factor is essentially an entropy.
The Shannon entropy, H

(
P (l)

)
=

−∑2l

i=1 p
(l)
g (i) log2 p

(l)
g (i), is a special case of the Renyi

entropy [17], i.e.,

H
(
P (l)

)
= lim

q→1
Hq

(
P (l)

)
. (9)

Figure 3 shows Shannon entropies of our empirical dis-
tributions from the data sets. If a distribution is uniform,
H

(
P (l)

)
= l as denoted by the diagonal line in the figure. On

the other hand, if a distribution is extremely non-uniform, e.g.,
all vulnerable hosts concentrate on one subnet, H

(
P (l)

)
= 0.

Hence, the distance between H
(
P (l)

)
and 0 in Figure 3

reflects how uniform a distribution is. Similarly, the distance
between β(l) and the horizontal access 1 in Figure 2 measures
the degree of unevenness. A larger H

(
P (l)

)
corresponds to

a more even distribution, whereas a larger β(l) corresponds
to a more non-uniform distribution. Evidenced by Figure
2, the non-uniformity factor magnifies the unevenness of a
distribution. In addition, if two distributions have different
prefix lengths, we can directly apply the non-uniformity factor
to compare the unevenness between them. Therefore, the non-
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Fig. 3. Shannon entropies of collected data sets.

uniformity factor provides a better measure for describing the
non-uniformity of a distribution.

More importantly, the non-uniformity factor can directly
reflect how much faster a network-aware worm spreads than
a random-scanning worm, which is shown in the next section.

From an information theoretical viewpoint, the entropy
provides a quantitative measure of uncertainty. The uncertainty
of a vulnerable-host probability distribution is important for
an attacker to design an intelligent network-aware worm. If
there is no uncertainty about the distribution of vulnerable
hosts (e.g., either all vulnerable hosts are concentrated on a
subnet or all information about vulnerable hosts is known),
the entropy is minimum, and the worm that uses the informa-
tion on the distribution can spread fastest by employing the
optimal importance scanning [6]. On the other hand, if there
is maximum uncertainty (e.g., vulnerable hosts are uniformly
distributed), the entropy is maximum. But the worm cannot
take advantage of the information of the distribution and can
only use random scanning. Moreover, when an attacker obtains
more information about the vulnerable-host distribution, in
general, the resulting worm can spread faster.

V. NETWORK-AWARE WORM SPREADING ABILITY

How to quantify the spreading speed of a network-aware
worm with the information of a vulnerable-host distribution?
We characterize the spread of a network-aware worm at an
early stage by deriving the infection rate.

A. Infection Rate

The infection rate, denoted by α, is defined as the average
number of vulnerable hosts that can be infected per unit
time by one infected host during the early stage of worm
propagation [26]. The infection rate is an important metric
for studying network-aware worm spreading ability for two
reasons. First, since the number of infected hosts increases
exponentially with the rate 1 + α during the early stage, a
worm with a higher infection rate can spread much faster
at the beginning and thus infect a large number of hosts in
a shorter time [6]. Second, while it is generally difficult to
derive a close-form solution for dynamic worm propagation,
we can obtain a close-form expression of the infection rate for
different worm scanning methods.

Let R denote the (random) number of vulnerable hosts that
can be infected per unit time by one infected host during the
early stage of worm propagation. The infection rate is the
expected value of R, i.e., α = E[R]. Let s be the scanning
rate or the number of scans sent by an infected host per unit
time, N be the number of vulnerable hosts, and Ω be the
scanning space (i.e., Ω = 232).

For random scanning (RS) [26], [6], an infected host sends
out s random scans per unit time, and the probability that one
scan hits a vulnerable host is N

Ω . Thus, R follows a Binomial
distribution B(s, N

Ω )2, resulting in

αRS = E[R] =
sN

Ω
. (10)

B. Importance Scanning

We derive the infection rates of importance scanning (IS)
[6], [5]. An infected host scans /l subnet i with the probability
q
(l)
g (i). q

(l)
g (i) is called the group scanning distribution and is

to be chosen with respect to the group distribution p
(l)
g (i). If

a worm scan hits /l subnet i, it would have a probability of
Np(l)

g (i)

232−l to find a vulnerable host. Thus, a worm scan hits a

vulnerable host with a likelihood of
∑2l

i=1

(
q
(l)
g (i) · Np(l)

g (i)

232−l

)
.

Similar to random scanning, R of IS follows a Binomial

distribution B(s,
∑2l

i=1

Np(l)
g (i)q(l)

g (i)

232−l ), which leads to

αIS = E[R] = sN

2l∑
i=1

p
(l)
g (i)q(l)

g (i)
232−l

. (11)

The same result was derived in [6] but by a different approach.
We now consider a special case of IS, where the group

scanning distribution q
(l)
g (i) is chosen to be proportional to the

number of vulnerable hosts in group i, i.e., q
(l)
g (i) = p

(l)
g (i).

2In our derivation, we ignore the dependency of the events that different
scans hit the same target at the early stage of worm propagation.



This results in suboptimal IS [6], called /l IS. Thus, the
infection rate is

α
(l)
IS =

sN

232−l

2l∑
i=1

(pg(i))
2 = αRS · β(l). (12)

Compared with RS, this /l IS can increase the infection rate by
a factor of β(l). Such an infection rate can be considered as a
benchmark for comparison with other network-aware worms.

C. Localized Scanning

Localized scanning (LS) has been used by such real worms
as Code Red II and Nimda [15], [4]. We first consider a
simplified version of LS, called /l LS, which scans the Internet
as follows:

• pa (0 ≤ pa ≤ 1) of the time, an address with the same
first l bits is chosen as the target,

• 1 − pa of the time, a random address is chosen.

Assume that an initially infected host is randomly chosen
from the vulnerable hosts. Let Ig denote the subnet where
an initially infected host locates. Thus, P (Ig = i) = p

(l)
g (i),

where i = 1, 2, · · · , 2l. For an infected host located in /l subnet
i, a scan from this host probes globally with the probability
of 1 − pa and hits /l subnet j (j �= i) with the likelihood of
1−pa

2l . Thus, the group scanning distribution for this host is

q(l)
g (j) =

{
pa + 1−pa

2l , if j = i;
1−pa

2l , otherwise,
(13)

where j = 1, 2, · · · , 2l. Given the subnet location of an ini-
tially infected host, we can apply the results of IS. Specifically,
putting Equation (13) into Equation (11), we have

E[R|Ig = i] =
sN

232−l

(
pap(l)

g (i) +
1 − pa

2l

)
. (14)

Therefore, we can compute the infection rate of /l LS as

α
(l)
LS = E[R] = E[E[R|Ig]] =

2l∑
i=1

p(l)
g (i)E[R|Ig = i], (15)

resulting in

α
(l)
LS = αRS

(
1 − pa + paβ(l)

)
. (16)

Since β(l) > 1 (β(l) = 1 is for a uniform distribution and is
excluded here), α

(l)
LS increases with respect to pa. Specifically,

when pa → 1, α
(l)
LS → αRSβ(l) = α

(l)
IS . Thus, /l LS has an

infection rate comparable to that of /l IS. In reality, pa cannot
be 1. This is because an LS worm begins spreading from one
infected host that is specifically in a subnet; and if pa = 1,
the worm can never spread out of this subnet. Therefore, we
expect that the optimal value of pa should be large but not 1.

Next, we further consider another LS, called two-level LS
(2LLS), which has been used by the Code Red II and Nimda
worms [28], [29]. 2LLS scans the Internet as follows:

• pb (0 ≤ pb ≤ 1) of the time, an address with the same
first byte is chosen as the target,

• pc (0 ≤ pc ≤ 1 − pb) of the time, an address with the
same first two bytes is chosen as the target,

• 1 − pb − pc of the time, a random address is chosen.

For example, for the Code Red II worm, pb = 0.5 and pc =
0.375 [28]; for the Nimda worm, pb = 0.25 and pc = 0.5
[29]. Using the similar analysis for /l LS, we can derive the
infection rate of 2LLS:

α2LLS = αRS

(
1 − pb − pc + pbβ

(8) + pcβ
(16)

)
. (17)

Since β(16) ≥ β(8) ≥ 1 from Theorem 1, α2LLS holds
or increases when both pb and pc increase. Specially, when
pc → 1, α2LLS → αRSβ(16) = α

(16)
IS . Thus, 2LLS has an

infection rate comparable to that of /16 IS. Moreover, β(16) is
much larger than β(8) as shown in Table II for the collected
distributions. Hence, pc is more significant than pb for 2LLS.

D. Modified Sequential Scanning

The Blaster worm is a real worm that exploits sequen-
tial scanning in combination with localized scanning. A
sequential-scanning worm studied in [27], [10] begins to scan
addresses sequentially from a randomly chosen starting IP
address and has a similar propagation speed as a random-
scanning worm. The Blaster worm selects its starting point
locally as the first address of its Class C subnet with probabil-
ity 0.4 [31], [27]. To analyze the effect of sequential scanning,
we do not incorporate localized scanning. Specifically, we
consider our /l modified sequential-scanning (MSS) worm,
which scans the Internet as follows:

• Newly infected host A begins with random scanning until
finding a vulnerable host with address B.

• After infecting the target B, host A continues to sequen-
tially scan IP addresses B + 1, B + 2, · · · (or B − 1,
B − 2, · · · ) in the /l subnet where B locates.

Such a sequential worm-scanning strategy is in a similar spirit
to the nearest neighbor rule, which is widely used in pattern
classification [7]. The basic idea is that if the vulnerable hosts
are clustered, the neighbor of a vulnerable host is likely to be
vulnerable also.

Such a /l MSS worm has two stages. In the first stage (called
MSS 1), the worm uses random scanning and has an infection
rate of αRS , i.e., αMSS 1 = αRS . In the second stage (called
MSS 2), the worm scans sequentially in a /l subnet. The fist l
bits of a target address are fixed, whereas the last 32−l bits of
the address are generated additively or subtractively and are
modulated by 232−l. Let Ig denote the sunbet where B locates.
Thus, P (Ig = i) = p

(l)
g (i), where i = 1, 2, · · · , 2l. Since a

sequential worm scan in subnet i has a probability of N
(l)
i

232−l to

hit a vulnerable host, E[R|Ig = i] = N
(l)
i

232−l s = αRS · 2lp
(l)
g (i),

which leads to

αMSS 2 = E[R] = E[E[R|Ig]] = αRS · β(l). (18)

Therefore, the infection rate of /l MSS is between αRS and
αRSβ(l).

In Summary, infection rates of all three network-aware
worms (IS, LS, and MSS) can be far larger than that of an RS
worm, depending on the non-uniformity factors.



VI. SIMULATION AND VALIDATION

A. Infection Rate

We first focus on validating infection rates. We apply the
discrete event simulation to our experiments [18]. Specifically,
we simulate the searching process of a worm using different
scanning methods at the early stage. We use the C1 data set
for the vulnerable-host distribution. The worm spreads over
the C1 distribution with N = 448, 894 and has a scanning rate
s = 100. Note that the C1 distribution has the non-uniformity
factors β(8) = 9.0 and β(16) = 52.2. The simulation stops
when the worm has sent out 103 scans for RS, /16 IS, /16 LS,
and 2LLS, and 65,535 scans for /16 MSS 2. Then, we count
the number of vulnerable hosts hit by the worm scans and
compute the infection rate. The results are averaged over 104

runs. Table III compares the simulation results (i.e., sample
mean) with the analytical results (i.e., Equations (10), (12),
(16), (17), and (18)). Here, a /16 LS worm uses pa = 0.75,
whereas a 2LLS worm employs pb = 0.25 and pc = 0.5. We
observe that the sample means and the analytical results are
almost identical.

TABLE III

INFECTION RATES OF DIFFERENT SCANNING METHODS.

Scanning method RS /16 IS /16 LS 2LLS /16 MSS 2
Analytical result 0.0105 0.5456 0.4118 0.2989 0.5456

Sample mean 0.0103 0.5454 0.4023 0.2942 0.5489
Sample variance 0.0010 0.0543 0.2072 0.1053 0.3186

We observe that network-aware worms have much larger
infection rates than random-scanning worms. LS indeed in-
creases the infection rate with nearly a non-uniformity factor
and approaches the capacity of suboptimal IS. This is signifi-
cant as LS only depends on one or two parameters (i.e., pa for
/l LS and pb, pc for 2LLS), while IS requires the information
of the vulnerable-host distribution. On the other hand, LS has
a larger sample variance than IS as indicated by Table III.
This implies that the infection speed of an LS worm depends
on the location of initially infected hosts. If the LS worm
begins spreading from a subnet containing densely populated
vulnerable hosts, the worm would spread rapidly. Furthermore,
we notice that the MSS worm also has a large infection rate
at the second stage, indicating that MSS can indeed exploit
the clustering pattern of the distribution. Meanwhile, the large
sample variance of the infection rate of MSS 2 reflects that an
MSS worm strongly depends on the initially infected hosts.
We further compute the infection rate of a /16 MSS worm
that includes both random-scanning and sequential-scanning
stages. Simulation results are averaged over 106 runs and are
summarized in Table IV. These results strongly depend on the
total number of worm scans. When the number of worm scans
is small, an MSS worm behaves similar to a random-scanning
worm. When the number of worm scans increases, the MSS
worm spends more scans on the second stage and thus has a
larger infection rate.

B. Dynamic Worm Propagation

An infection rate only characterizes the early stage of
worm propagation. We now employ the analytical active worm

TABLE IV

INFECTION RATES OF A /16 MSS WORM.

# of worm scans 10 100 1000 10000 50000
Sample mean 0.0108 0.0190 0.0728 0.2866 0.4298

Sample variance 0.1246 0.1346 0.1659 0.2498 0.2311
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Fig. 4. A network-aware worm spreads over the D1-80 distribution.

propagation (AAWP) model and its extensions to characterize
the entire spreading process of worms [4]. Specifically, the
spread of RS and IS worms is implemented as described in [6],
whereas the propagation of LS worms is modeled according
to [15]. The parameters that we use to simulate a worm are
comparable to those of the Code Red v2 worm. Code Red v2
has a vulnerable population N = 360, 000 and a scanning rate
s = 358 per minute [25]. We assume that the worm begins
spreading from an initially infected host that is located in the
subnet containing the largest number of vulnerable hosts.

We first show the propagation speeds of network-aware
worms for the same vulnerable-host distribution from data
set D1-80. From Section V, we expect that a network-aware
worm can spread much faster than an RS worm. Figure 4
demonstrates such an example on a worm that uses different
scanning methods. It takes an RS worm 10 hours to infect 99%
of vulnerable hosts, whereas a /8 LS worm with pa = 0.75
or a /8 IS worm takes only about 3.5 hours. A /16 LS worm
with pa = 0.75 or a 2LLS worm with pb = 0.25 and pc = 0.5
can further reduce the time to 1 hour. A /16 IS worm spreads
fastest and takes only 0.5 hour.

We also study the effect of vulnerable-host distributions
on the propagation of network-aware worms. From Table II,
we observe that β

(16)
D1−1023 > β

(16)
W1 > β

(16)
C1 > β

(16)
D1 . Thus,

we expect that a network-aware worm using the /16 D1-
1023 distribution would spread faster than using other three
distributions. Figure 5 verifies this through the simulations of
the spread of a 2LLS worm that uses different vulnerable-host
distributions (i.e., D1-1023, W1, C1, and D1). Here, the 2LLS
worm employs the same parameters as the Nimda worm, i.e.,
pb = 0.25 and pc = 0.5. As expected, the worm using the D1-
1023 distribution spreads fastest, especially at the early stage
of worm propagation.
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VII. EFFECTIVENESS OF DEFENSE STRATEGIES

A. Host-Based Defense

Host-based defense has been widely used for random-
scanning worms. Proactive protection and virus throttling are
examples of host-based defense strategies.

A proactive protection (PP) strategy proactively hardens a
system, making it difficult for a worm to exploit vulnerabilities
[3]. Techniques used by PP include address-space random-
ization, pointer encryption, instruction-set randomization, and
password protection. Thus, a worm requires multiple trials
to compromise a host that implements PP. Specifically, let
p (0 ≤ p ≤ 1) denote the protection probability or the
probability that a single worm attempt succeeds in infecting a
vulnerable host that implements PP. On the average, a worm
should make 1

p exploit attempts to compromise the target.
We assume that hosts with PP are uniformly deployed in the
Internet. Let d (0 < d ≤ 1) denote the deployment ratio
between the number of hosts with PP and the total number
of hosts.

To show the effectiveness of the PP strategy, we consider
the infection rate of a /l IS worm. Since now some of the
vulnerable hosts implement PP, Equation (12) changes to

α
(l)
IS =

sN

232−l

2l∑
i=1

[
dp

(
p(l)

g (i)
)2

+ (1 − d)
(
p(l)

g (i)
)2

]

= αRSβ(l)(1 − d + dp). (19)

To slow down the spread of a suboptimal IS worm to that of
a random-scanning worm, β(l)(1 − d + dp) ≤ 1, resulting in

p ≤ 1 − (1 − d)β(l)

dβ(l)
. (20)

When PP is fully deployed, i.e., d = 1, p can be at most
1

β(l) . On the other hand, if PP provides perfect protection, i.e.,

p = 0, d should be at least 1 − 1
β(l) . Therefore, when β(l) is

large, Inequality (20) presents high requirements for the PP
strategy. For example, if β(16) = 50 (most of β(16)’s in Table
II are larger than this value), p ≤ 0.02 and d ≥ 0.98. That is,
a PP strategy should be almost fully deployed and provide a
nearly perfect protection for a vulnerable host.
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We extend the model described in [6] to characterize the
spread of suboptimal IS worms under the defense of the PP
strategy and show the results in Figure 6. Here, Code-Red-v2-
like worms spread over the C1 distribution with β(16) = 52.2.
It is observed that even when the protection probability is
small (e.g., p = 0.01) and the deployment ratio is high (e.g.,
d = 0.8), a /16 IS worm is slowed down a little at the early
stage, compared with a /16 IS worm without the PP defense
(i.e., p = 1 and d = 0). Moreover, when p is small (e.g.,
p ≤ 0.02), d is a more sensitive parameter than p.

We next consider the virus throttling (VT) strategy that
constrains the number of outgoing connections of a host [22].
Thus, VT can reduce the scanning rate of an infected host.
We find that Equation (19) also holds for this strategy, except
that p is the ratio between the scanning rate of infected hosts
with VT and that of infected hosts without VT. Therefore, VT
also requires to be almost fully deployed for fighting network-
aware worms effectively.

From these two strategies, we have learned that an effective
strategy should reduce either αRS or β(l). Host-based defense,
however, is limited in such capabilities shown in this section.

B. IPv6

IPv6 can decrease αRS significantly [26] by increasing the
scanning space. But the non-uniformity factor would increase
the infection rate if the vulnerable-host distribution is still non-
uniform. Hence, an important question is whether IPv6 can
counteract network-aware worms when both αRS and β(l) are
taken into consideration.

We study this issue by computing the infection rate of a
network-aware worm in the IPv6 Internet. As pointed out by
[2], a smart worm can first detect some vulnerable hosts in
/64 subnets containing many vulnerable hosts, then release
to the hosts on the hitlist, and finally spread inside these
subnets. Such a worm only scans the local /64 subnet. Thus,
we focus on the spreading speed of a network-aware worm
in a /64 subnet. From Figure 2, we extrapolate that β(32)

in the IPv6 Internet can be in the order of 105 if hosts are
still distributed in a clustered fashion. Using the parameters
N = 108 proposed by [9] and s = 4, 000 used by the



Slammer worm [13], we derive the infection rate of a /32
IS worm in a /64 subnet of the IPv6 Internet: αIPv6

IS =
sN
264 · β(32) = 2.2 × 10−3. αIPv6

IS is larger than the infection
rate of the Code Red v2 worm in the IPv4 Internet, where
αCR

RS = 360,000×358/60
232 = 5 × 10−4.

Therefore, IPv6 can only slow down the spread of a
network-aware worm to that of a random-scanning worm
in IPv4. To defend against the worm effectively, we should
further consider how to slow down the increase rate of β(l) as
l increases when IPv4 is updated to IPv6.

VIII. CONCLUSIONS

In this paper, we have observed and characterized non-
uniform vulnerable-host distributions across five measurement
sets from different sources. We have derived a simple metric,
known as the non-uniformity factor, to quantify an uneven
distribution of vulnerable hosts. The non-uniformity factors
have been obtained using our collected data, and all of which
demonstrate large values. This implies that the non-uniformity
of the vulnerable-host distribution is significant and seems
to be consistent across networks and applications. Moreover,
the non-uniformity factor, shown as a function of the Renyi
entropy of order two, better characterizes the uneven feature
of a distribution than the Shannon entropy.

The importance of a non-uniformity factor is that it quan-
tifies the spreading ability of network-aware worms. We have
derived analytical expressions relating the non-uniformity fac-
tors with the infection rates of network-aware worms. We
have empirically verified that localized scanning and modified
sequential scanning can increase the infection rate by nearly a
non-uniformity factor when compared to random scanning and
thus approach the capacity of suboptimal importance scanning.

Furthermore, we have evaluated the effectiveness of several
commonly used defense strategies on network-aware worms.
The host-based defense, such as proactive protection or virus
throttle, requires to be almost fully deployed to slow down
worm spreading at the early stage. This implies that host-
based defense would be weakened significantly by network-
aware scanning. More surprisingly, different from previous
findings, we have shown that network-aware worms can be
zero-day worms in the IPv6 Internet if vulnerable hosts are
still clustered. These findings present a significant challenge
to worm defense: Entirely different strategies may be needed
for fighting against network-aware worms.

As part of our ongoing work, we plan to develop effective
detection and defense systems against network-aware worms,
taking the vulnerable-host distribution into consideration.
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