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Abstract— Localized scanning is a simple technique used by
attackers to search for vulnerable hosts. Localized scanning
trades off between the local and the global search of vulnerable
hosts and has been used by Code Red II and Nimda worms.
As such a strategy is so simple yet effective in attacking the
Internet, it is important that defenders understand the spreading
ability and behaviors of localized-scanning worms. In this work,
we first characterize the relationships between vulnerable-host
distributions and the spread of localized-scanning worms through
mathematical modeling and analysis, and compare random
scanning with localized scanning. We then design an optimal
localized-scanning strategy, which provides an upper bound on
the spreading speed of localized-scanning self-propagating codes.
Furthermore, we construct three variants of localized scanning.
Specifically, the feedback localized scanning and the ping-pong
localized scanning adapt the scanning methods based on the
feedback from the probed host, and thus spread faster than
the original localized scanning and meanwhile have a smaller
variance.

I. INTRODUCTION

Self-propagating Internet worms have posed significant
threats to network security. For example, Code Red [7], Nimda
[20], and Witty [10] worms infected hundreds of thousands
of computers and cost tremendous efforts to eliminate them.
Therefore, it is important that we understand how worms
spread to design effective countermeasures accordingly.

A worm spreads by using distinct scanning mechanisms
including topological and hitlist scanning [12]. Our focus,
however, is only on scanning worms that probe the entire IPv4
address space or the routable address space, such as random,
routable, importance, and localized scanning. Random scan-
ning chooses target IP addresses at random and is exploited
by Code Red and Witty worms. Routable scanning selects
targets only in the routable address space by using the infor-
mation provided by BGP routing table [14], [16]. Importance
scanning exploits an uneven distribution of vulnerable hosts
and focuses worm scans on the most relevant parts of the IPv4
address space [4], [3].

In this work, our focus is on localized scanning, which has
been used by such famous worms as Code Red II and Nimda.
Localized scanning preferentially searches for vulnerable hosts
in the “local” address space. For example, the Code Red II
worm selects target IP addresses as follows [19]:

• 50% of the time, an address with the same first byte is
chosen as the target,

• 37.5% of the time, an address with the same first two
bytes is chosen as the target,

• 12.5% of the time, a random address is chosen.
Song et al. showed that Nimda and Code Red II worms

accounted for 90% infection attempts in the seven-week period
from September 19 to November 3, 2001 [11]. Why is such
a localized strategy so effective? It has been observed that
in the current Internet, a sub-network intends to have many
computers with the same operating systems and applications
for easy management [9]. Hence, vulnerable hosts usually
form clusters [2]. Once a vulnerable host in such a subnet is
infected, a localized-scanning worm can rapidly compromise
all the other local vulnerable hosts.

The goal of this work is to better understand the spread-
ing ability and characteristics of localized-scanning worms.
Specifically, we attempt to answer the following questions:

• What is the effect of vulnerable-host distributions on the
spread of localized-scanning worms? The prior work has
studied this effect empirically [2], [17], [9]. In this work,
we use mathematical reasoning to show the relation-
ships between vulnerable-host distributions and localized-
scanning worms. Specifically, it is shown analytically that
localized-scanning worms spread slower than random-
scanning worms if vulnerable hosts are uniformly dis-
tributed, or faster if highly unevenly distributed. More-
over, if infected hosts are uniformly distributed, localized-
scanning worms can speed up the propagation with nearly
a rate of the non-uniformity factor that quantifies the non-
uniformity of a vulnerable-host distribution [5].

• What is the propagation capacity of a localized-scanning
worm? We design an optimal localized-scanning strategy
that maximizes the localized-scanning worm propagation
speed. Such a strategy dynamically adapts the param-
eters used for scanning the local sub-network and the
global Internet, based on the distribution of uninfected
vulnerable hosts. Although the optimal localized scanning
is difficult to implement, it provides an upper bound
on the spreading speeds of the currently used localized
scanning and its variants. Moreover, we empirically show
that the propagation speed of the currently used localized
scanning can approach that of the optimal strategy.

• What are some possible variants of localized-scanning
worms? We study three variants of localized scanning



that can be easily implemented. The first one makes an
infected host focus on scanning either locally or globally.
Such a variant, however, is shown empirically to spread
slower and have a larger variance than localized scanning.
Therefore, it may not be a good candidate for worm
attacks. The second variant is inspired by the optimal
localized scanning. Specifically, an infected host initiates
to scan the local sub-network and switches to scanning
the global Internet when it probes a local host that has
been already infected. Such a strategy makes an infected
host adapt scanning strategies dynamically, based on the
feedback from the probed host. We show that this simple
variant can spread faster than localized scanning and
has a smaller variance. Therefore, this scanning method
is a potential tool for attackers. The second variant is
easily extended to a “ping-pong” algorithm, which further
improves the worm spreading speed at the late stage.

The remainder of this paper is structured as follows. Sec-
tion II provides the background on localized scanning and
vulnerable-host distributions. Section III shows the effect of
vulnerable-host distributions on localized scanning analyti-
cally. Sections IV and V design the optimum and the variants
of localized scanning. Section VI concludes the paper.

II. PRELIMINARIES

A. Localized Scanning
Localized scanning preferentially scans for targets in the

address space that is close to the victim. The basic idea of such
a scanning method is that if vulnerable hosts are clustered, an
infected host searching for local hosts would have a higher
probability to find a target than random guessing. Localized
scanning has been exploited by Code Red II and Nimda worms
[19], [20]. Moreover, the Blaster worm also uses localized
scanning to select its starting point [21]. The successes of these
worms indicate the effectiveness of such a simple scanning
strategy.

In this work, we consider two types of localized scanning
(LS). The first type is a simplified version of LS, called /l LS,
which scans the Internet as follows:

• pa (0 ≤ pa ≤ 1) of the time, an address with the same
first l bits is chosen as the target,

• 1 − pa of the time, a random address is chosen.
When pa = 0, /l LS is identical to random scanning (RS).
Here, we use the classless inter-domain routing (CIDR) no-
tation. The IPv4 address space is partitioned into subnets
according to the first l bits of IP addresses, i.e., /l prefixes
or /l subnets, where l ∈ {0, 1, , · · · , 32}. Thus, each /l subnet
i (i = 1, 2, · · · , 2l) has 232−l addresses.

The second type is called two-level LS (2LLS), which has
been used by the Code Red II and Nimda worms. 2LLS scans
the Internet as follows:

• pb (0 ≤ pb ≤ 1) of the time, an address with the same
first byte is chosen as the target,

• pc (0 ≤ pc ≤ 1 − pb) of the time, an address with the
same first two bytes is chosen as the target,
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Fig. 1. CDF of the percentage of Witty-worm victims in sorted /16 subnets.

• 1 − pb − pc of the time, a random address is chosen.
For example, for the Code Red II worm, pb = 0.5 and pc =
0.375 [19]; for the Nimda worm, pb = 0.25 and pc = 0.5
[20].

Only a handful work has been carried out on localized
scanning. Chen et al. pointed out that if the vulnerable hosts
are uniformly distributed in the IPv4 address space, local-
ized scanning spreads at a slightly slower rate than random
scanning [2]. Zou et al. showed that if the vulnerable hosts
are uniformly distributed only in the routable address space,
localized scanning has a spreading speed comparable to Class-
A routable scanning [17]. Rajab et al. further demonstrated
that if the vulnerable hosts follow a power law distribution,
localized scanning can propagate much faster than random
scanning [9]. The prior work, however, focuses on simulation
comparisons between localized scanning and random scan-
ning. The mathematical reasoning on these comparisons has
not been studied.

B. Vulnerable-Host Distribution
The prerequisite for localized scanning is that vulnerable

hosts are non-uniformly distributed in the Internet. The non-
uniformity of vulnerable-host distributions has been observed
in prior work [1], [7], [8], [10], [9], [4]. Taking the distribution
of Witty-worm victims among /16 subnets as an example, we
process the data provided by CAIDA [18] as follows. First, the
/16 subnets are sorted decreasingly according to the number of
vulnerable hosts. Then, the empirical cumulative distribution
function (CDF) of the percentage of vulnerable hosts in the
sorted /16 subnets is computed and plotted in Figure 1. We find
that 1,573 (2.4%) /16 subnets contain 80% vulnerable hosts,
whereas 2,453 (3.7%) /16 subnets hold 90% vulnerable hosts.
Therefore, only a small percentage of /16 subnets contain a
large portion of vulnerable hosts, and the distribution of Witty-
worm victims is highly non-uniform.

C. Non-Uniformity Factor
How can we quantify the non-uniformity of a vulnerable-

host distribution? In our prior work [5], we use a simple



metric, called the non-uniformity factor, to measure the non-
uniformity of a distribution.

Let N be the total number of vulnerable hosts and N
(l)
i be

the number of vulnerable hosts in /l subnet i (i = 1, 2, · · · , 2l).
Define p

(l)
g (i) =

N
(l)
i

N
, which is called the group distribution

in /l subnets. Then, the non-uniformity factor in /l subnets is
defined as

β(l) = 2l

2l

∑

i=1

(

p(l)
g (i)

)2

. (1)

A larger non-uniformity factor indicates a more non-uniform
distribution. When a vulnerable-host distribution is uniform
among /l subnets, β(l) = 1. For the Witty-worm victim
distribution, β(8) = 12.0 and β(16) = 126.7.

III. EFFECT OF VULNERABLE-HOST DISTRIBUTIONS ON
LOCALIZED SCANNING

In this section, we study the effect of vulnerable-host
distributions on localized scanning and compare the spreading
dynamics of localized-scanning (LS) worms with those of
random-scanning (RS) worms by modeling their propagation.
As a dynamic worm-propagation model is non-linear, it is
difficult to result in a close-form solution. Hence, we gain
some insights through exploring extreme cases of vulnerable-
host and infected-host distributions among subnets. Specifi-
cally, we consider three extreme cases: (1) Vulnerable hosts
are evenly distributed, (2) Vulnerable hosts are highly unevenly
distributed, and (3) Infected hosts are uniformly distributed.

A simple abstract model, known as the susceptible →
infected (SI) model, has been exploited to model the spread
of worms in various earlier work [12], [16]. The SI model
assumes that each host has two states: susceptible and infected.
Once infected, a host stays in the infected state. Here, we
adopt a discrete-time SI model. In particular, we employ the
analytical active worm propagation (AAWP) model, which was
proposed by Chen et al. in [2] and has been applied in [9],
[6], [14].

A. Random Scanning

In the AAWP model, the spread of RS worms is character-
ized as follows [4]:

It+1 = It + (N − It)

[

1 −

(

1 −
1

Ω

)Its
]

(2)

= It + (N − It)
Its

Ω
− O

(

1

Ω2

)

, (3)

where It is the average number of infected hosts at time t (t ≥
0); N is the total number of vulnerable hosts; s is the scanning
rate; and Ω is the scanning space. Since Ω = 232 >> 1, we
ignore O

(

1
Ω2

)

and have

It+1 = It +
(N − It)Its

Ω
. (4)

B. /l Localized Scanning
The AAWP model can be extended to model the spread of

/l LS worms:

I
(l)
t+1,i = I

(l)
t,i + (N

(l)
i − I

(l)
t,i )

[

1 −

(

1 −
1

Ωi

)St,i

]

(5)

= I
(l)
t,i + (N

(l)
i − I

(l)
t,i )

St,i

Ωi

− O

(

1

Ω2
i

)

, (6)

where i = 1, 2, · · · , 2l; I
(l)
t,i is the expected number of infected

hosts in /l subnet i at time t (t ≥ 0); N
(l)
i is the number

of vulnerable hosts in /l subnet i; Ωi is the size of the
address space in /l subnet i; and St,i is the average number
of scans hitting /l subnet i during time period (t, t + 1].
Since Ωi = 232−l >> 1, we ignore O

(

1
Ω2

i

)

. Summing over
i = 1, 2, · · · , 2l on both sides of Equation (6), we have

It+1 = It +
2l

∑

i=1

(

N
(l)
i − I

(l)
t,i

)

St,i

232−l
, (7)

where It =
∑2l

i=1 I
(l)
t,i .

The average number of scans that fall into /l subnet i during
the time period (t, t + 1] (i.e., St,i) consists of two parts: (a)
paI

(l)
t,i s scans from local infected hosts within subnet i and (b)

(1−pa)Its

2l scans from all infected hosts. That is,

St,i =

(

paI
(l)
t,i +

1 − pa

2l
It

)

s, i = 1, 2, · · · , 2l. (8)

Putting Equation (8) into Equation (7), we have

It+1 = It + (1 − pa)
(N − It)Its

Ω

+pa

s

Ω
· 2l

2l

∑

i=1

(

N
(l)
i − I

(l)
t,i

)

I
(l)
t,i . (9)

On the right-hand side of the above equation, the second term
represents the random-scanning component in the /l LS, while
the third term corresponds to the preference of scanning the
local /l subnet. If (N−It)Its

Ω ≤ s
Ω · 2l

∑2l

i=1

(

N
(l)
i − I

(l)
t,i

)

I
(l)
t,i ,

a /l LS worm should choose a large value of pa to speed up
the propagation.

As a close-form expression for It is difficult to obtain, we
consider three extreme cases of vulnerable-host and infected-
host distributions. The first case assumes that vulnerable hosts
are uniformly distributed, i.e., N

(l)
1 = N

(l)
2 = · · · = N

(l)

2l .
Then, when I

(l)
t,i > I

(l)
t,j , N

(l)
i − I

(l)
t,i < N

(l)
j − I

(l)
t,j , i, j ∈

{1, 2, · · · , 2l}. This results in

2l

2l

∑

i=1

(

N
(l)
i − I

(l)
t,i

)

I
(l)
t,i

<





2l

∑

i=1

(

N
(l)
i − I

(l)
t,i

)









2l

∑

i=1

I
(l)
t,i



 = (N − It)It, (10)



assuming that the numbers of infected hosts among subnets are
not all equal. The above relation is obtained by the Chebyshev
sum inequality [13] or the rearrangement inequality [22]. The
details of these two inequalities are given in the Appendix.
When applying the result of Equation (10) to Equation (9),
we obtain that It+1 < It + (N−It)Its

Ω . Therefore, the uniform
distribution of vulnerable hosts leads to a low value of pa for
an effective /l LS worm. Moreover, the spread of /l LS worms
is slower than that of RS worms in this case.

The second case assumes that vulnerable hosts are highly
unevenly distributed so that when a /l subnet has more infected
hosts, it would also contain more uninfected vulnerable hosts.
That is, when I

(l)
t,i > I

(l)
t,j , N

(l)
i − I

(l)
t,i > N

(l)
j − I

(l)
t,j , i, j ∈

{1, 2, · · · , 2l}. We can then derive

2l

2l

∑

i=1

(

N
(l)
i − I

(l)
t,i

)

I
(l)
t,i > (N − It)It, (11)

assuming that the numbers of infected hosts among subnets are
not all equal. The above relation is obtained by the Chebyshev
sum inequality. When applying the result of Equation (11) to
Equation (9), we obtain that It+1 > It +

(N−It)Its

Ω . Therefore,
for such an extreme case, a large value of pa is preferred for
an effective /l LS worm. Moreover, the spread of /l LS worms
is faster than that of RS worms.

The last case assumes a uniform distribution of infected
hosts among subnets. That is, the number of infected hosts in
/l subnet i is proportional to the number of vulnerable hosts
in this subnet, i.e., I

(l)
t,i = It · p

(l)
g (i), i = 1, 2, · · · , 2l. This

assumption changes Equation (9) to

It+1 = It +
(

1 − pa + paβ(l)
) (N − It)Its

Ω
, (12)

where β(l) is the non-uniformity factor as defined in Equation
(1). Thus, compared with RS (Equation (4)), /l LS can increase
the propagation speed with a rate of 1 − pa + paβ(l). For
example, when pa = 0.75, a /8 LS Witty worm can increase
the spreading speed with a factor of 9.25, whereas a /16 LS
Witty worm can increase the speed with a factor of 95.28.

C. Two-Level Localized Scanning

For 2LLS, Equation (7) still holds when l = 16. The average
number of scans hitting /16 subnet i during time period (t, t+
1] is

St,i =






pcI

(16)
t,i +

pb

28

∑

j∈A
(8)
i

I
(16)
t,j +

1 − pb − pc

216
It






s,

(13)
where i = 1, 2, · · · , 216; A

(8)
i denotes the set of /16 subnets

that have the same first byte of the subnet address as /16 subnet
i; and

∑

j∈A
(8)
i

I
(16)
t,j represents the expected number of the

infected hosts in the Class-A subnet that has the same first
byte of the address as the /16 subnet i. Putting Equation (13)

into Equation (7) and setting l = 16, we have,

It+1 = It + (1 − pb − pc)
(N − It)Its

Ω

+
28pbs

Ω

28
∑

i=1

(

N
(8)
i − I

(8)
t,i

)

I
(8)
t,i

+
216pcs

Ω

216
∑

i=1

(

N
(16)
i − I

(16)
t,i

)

I
(16)
t,i . (14)

Similar to /l LS, 2LLS can be shown to spread slower
(or faster) than RS if vulnerable hosts are uniformly (or
highly unevenly) distributed1. Moreover, if infected hosts are
uniformly distributed, the model for the 2LLS (i.e., Equation
(14)) becomes

It+1 = It +
(

1 − pb − pc + pbβ
(8) + pcβ

(16)
)

·

(N − It)Its

Ω
. (15)

Comparing Equations (4) with (15), we find that when pc is
large and the uniformity condition of infected hosts holds, a
2LLS worm can speed up the propagation nearly β(16) times
compared with an RS worm.

Our findings provide quantifications to some of the previous
observations [2], [17], [9]. For example, when vulnerable hosts
are uniformly distributed, an LS worm propagates slower than
an RS worm [2]. On the other hand, when the underlying
vulnerable-host distribution follows nearly a power law, an
LS worm can spread much faster than an RS worm [9].

IV. OPTIMAL DYNAMIC LOCALIZED SCANNING

What is the “best-case scenario” for LS worms? How
different is the currently used LS from the optimal LS? To
answer these questions, we study the optimal LS, focusing
on /l LS for simplicity. The essential of the optimal LS is to
choose the best parameters (i.e., pa, pb, and pc) to maximize
the propagation speed. Intuitively, the optimal LS should be
dynamic and adjust its parameters during the scanning process.
Hence, these parameters depend on the location of infected
hosts and vary with time. We use p

(a)
t,i to denote pa at time t

for an infected host in /l subnet i.

A. Optimal /l Localized Scanning
The optimal /l LS should determine p

(a)
t,i (0 ≤ p

(a)
t,i ≤ 1) to

maximize the probability of finding an uninfected vulnerable
host. To obtain this, we assume that the number of vulnerable
hosts and the number of infected hosts in each subnet at time
t (i.e., N

(l)
i ’s and I

(l)
t,i ’s) are known to the worm. Therefore,

our problem reduces to obtaining the optimal p
(a)
t,i ’s for worm

propagation, given N
(l)
i ’s and I

(l)
t,i ’s.

For the dynamic /l LS, the average number of scans that
fall into /l subnet i during time period (t, t + 1] (i.e., St,i)
consists of two parts: (a) p

(a)
t,i I

(l)
t,i s scans from local infected

1We omit the details of derivation for brevity.



TABLE I
SUMMARY OF THE OPTIMAL 2LLS.

Comparison Result Scanning strategy Meaning

max {N
(16)
i − I

(16)
t,i , N

(16)
i − I

(16)
t,i p

(b)
t,i = 0 and p

(c)
t,i = 1 scan only the local /16 subnet

1
28

P

j∈A
(8)
i

(N
(16)
j − I

(16)
t,j ), 1

28

P

j∈A
(8)
i

(N
(16)
j − I

(16)
t,j ) p

(b)
t,i = 1 and p

(c)
t,i = 0 scan only the local /8 subnet

1
216 (N − It)}

1
216 (N − It) p

(b)
t,i = p

(c)
t,i = 0 scan the global Internet randomly

hosts within subnet i and (b) 1
2l

∑2l

j=1 (1 − p
(a)
t,j )I

(l)
t,j s scans

from all infected hosts. That is,

St,i =



p
(a)
t,i I

(l)
t,i +

∑2l

j=1 (1 − p
(a)
t,j )I

(l)
t,j

2l



 s, (16)

where i = 1, 2, · · · , 2l. Putting Equation (16) into Equation
(7), we have

It+1 = It +
s

232−l

2l
X

i=1

I
(l)
t,i ·

»

p
(a)
t,i (N

(l)
i − I

(l)
t,i ) + (1 − p

(a)
t,i )

N − It

2l

–

. (17)

To maximize It+1, p
(a)
t,i needs to satisfy

p
(a)
t,i =

{

1, if N
(l)
i − I

(l)
t,i > N−It

2l ;

0, otherwise.
(18)

That is, if the number of uninfected vulnerable hosts in subnet
i is larger than the average number of uninfected vulnerable
hosts among 2l subnets at time t, the infected hosts in sunbet i

should scan only the local subnet; otherwise, the infected hosts
should use random scanning. Thus, the propagation model for
the optimal dynamic /l LS is

It+1 = It+
s

232−l

2l

∑

i=1

I
(l)
t,i max

{

N
(l)
i − I

(l)
t,i ,

N − It

2l

}

. (19)

Using this optimal scanning method, a worm starting from
a subnet that contains many vulnerable hosts would first
scan locally. The infected hosts in this subnet then switch
from scanning locally to scanning globally later when few
uninfected vulnerable hosts remain. The key is that the worm
switches the scanning strategy when it is aware of the change
of the distribution of uninfected vulnerable hosts.

It should be noted that implementing such optimal LS is
difficult. First, N

(l)
i ’s may not be known in advance. Second, to

perform this LS, each infected host needs to know I
(l)
t,i ’s, which

leads to numerous information exchanges among infected
hosts. The optimal dynamic LS, however, provides the best
scenario of LS and can be used as the baseline for designing
some realistic LS worms.

B. Optimal Two-Level Localized Scanning
We can easily extend the above derivation to the optimal

dynamic 2LLS and conclude the results here. Similar to p
(a)
t,i ,

let p
(b)
t,i and p

(c)
t,i (0 ≤ p

(b)
t,i ≤ 1 − p

(c)
t,i ≤ 1) denote pb and

pc at time t for an infected host in /16 subnet i. Assume that

N
(16)
i is the number of vulnerable hosts in /16 subnet i; I

(16)
t,i

is the number of infected hosts in /16 subnet i at time t; and
A

(8)
i is the set of /16 subnets that have the same first byte of

the subnet address as /16 subnet i. Three items, N
(16)
i −I

(16)
t,i ,

1
28

∑

j∈A
(8)
i

(N
(16)
j − I

(16)
t,j ), and 1

216 (N − It), are compared.
The corresponding optimal 2LLS worm scanning strategy is
summarized in Table I.

C. Experimental Results
In our experiments, we simulate the spread of a Witty worm,

which has a vulnerable population N = 55, 909 [18] and a
scanning rate s = 1, 200 per second [10]. The effect of disk
damage on the Witty worm propagation is ignored. The worm
is assumed to start spreading from one initially infected host
(i.e., I0 = 1).

We evaluate the propagation speed of optimal LS worms
by two methods. The first method is the numerical analysis
of the worm propagation models. Specifically, the spread of
/l LS worms is simulated by Equations (5) and (8), while the
propagation of 2LLS worms is implemented by Equations (5)
and (13). The optimal /l LS uses Equations (5), (16), and (18).
RS is regarded as a special case of the /l LS when pa = 0
and an extreme example of the 2LLS when pb = pc = 0.
The initially infected host is assumed to be located in the
subnet that contains the smallest number of vulnerable hosts.
Figure 2(a) compares the propagation speeds of RS, optimal
/8 LS, and the /8 LS with pa = 0.75. Figure 2(b) compares the
spreading speeds of optimal 2LLS and the 2LLS with pb =
0.25 and pc = 0.5. It is shown that LS can spread much faster
than RS, and the spreading speed of the currently used LS
(i.e., 2LLS) can approach that of the optimal LS.

The second evaluation method uses a discrete event simu-
lator to imitate the spread of LS worms. Our simulator imple-
ments each worm scan through a random number generator
and simulates each scenario with 100 runs using different
seeds. The initially infected host is located in the subnet that
contains the largest number of vulnerable hosts. Figure 3(a)
plots the mean and the variance of /16 LS worm propagation
with pa = 0.75. If a worm has a smaller variance, its
spread is more predictable and stable. The “5%” (or “95%”)
propagation curve denotes that a worm spreads no slower (or
faster) than this curve in 95 out of 100 simulation runs. The
standard derivation (STD) error-bar reflects the variance of
worm propagation among 100 simulation runs. It is observed
that a /16 LS infected 50,318 (90%) vulnerable hosts in 138
seconds averagely. Figure 3(b) plots the simulation results of
optimal /16 LS worm propagation. Such an optimal worm only
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Fig. 2. Numerical analysis of (optimal) LS worm propagation.

takes 65 seconds to infected 90% vulnerable hosts. Moreover,
the optimal /16 LS has a smaller variance compared with the
/16 LS.

V. VARIANTS OF LOCALIZED SCANNING

In this section, we study three variants of LS that can be
easily implemented and do not require information exchanges
among infected hosts.

A. Decision-First Localized Scanning
The first variant is called decision-first localized scanning

(DFLS). Instead of combining local scanning and global
scanning, DFLS makes an infected host focus on scanning
either locally or globally. For example, when a host is infected,
it flips a coin and makes a decision:

• Scan only the local /l subnet with probability pa,

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6 x 104

 Time (second)

 N
um

be
r o

f i
nf

ec
te

d 
ho

st
s

 STD of /16 LS
 Mean of /16 LS
 5% of /16 LS
 95% of /16 LS

(a) /16 LS.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6 x 104

 Time (second)

 N
um

be
r o

f i
nf

ec
te

d 
ho

st
s

 STD of optimal /16 LS
 Mean of optimal /16 LS
 5% of optimal /16 LS
 95% of optimal /16 LS

(b) Optimal /16 LS.

Fig. 3. Simulations of /16 LS and optimal /16 LS worm propagation.

• Scan globally with probability 1 − pa.
This scanning strategy is called /l DFLS, which is the coun-
terpart of /l LS. Since in a /l subnet pa percentage of infected
hosts scan locally and 1− pa percentage of infected hosts use
random scanning, Equations (5) and (8) still hold for /l DFLS.

We write a simulator to imitate the spread of DFLS worms
and use the same setting as in Figure 3. Figure 4 plots the
mean and the variance of /16 DFLS worm propagation with
pa = 0.75. It is observed that /16 DFLS spreads slower than
/16 LS and on average takes 140 seconds to infect 40,000
vulnerable hosts. Moreover, /16 DFLS has a large variance as
shown in the figure. This is because each infected host scans
only either locally or globally. The hosts scanning globally
have a slower speed to find a target. On the other hand, the
hosts scanning locally waste scans after the local infected hosts
become saturated. Thus, DFLS lacks a randomized algorithm
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Fig. 4. Simulations of /16 DFLS worm propagation.

to search for targets both locally and globally and may not be
a good candidate for worm attacks.

B. Feedback Localized Scanning and Ping-Pong Localized
Scanning

The second variant is called feedback localized scanning
(FLS), which is inspired by the optimal LS. The optimal
strategy adapts the scanning methods, based on the local
density of uninfected vulnerable hosts. In the similar way, we
design a variant of LS, based on the feedback from the local
probed host. For example, an infected host behaves as follows:

• First, initiates to scan the local /l subnet until probing a
local host that has been already infected,

• Then, switches from scanning locally to scanning the
global Internet.

This scanning strategy is called /l FLS. The basic idea is
that when the infected host probes a local host that has been
already infected, it realizes that the infected hosts in the subnet
probably have become saturated and had better switch to
scanning globally.

We also write a simulator for FLS and show the results
in Figure 5. Figure 5(a) plots the mean and the variance
of /16 FLS worm propagation. It is observed that /16 FLS
takes only 93 seconds to infect 90% vulnerable hosts and
further approaches the spreading capacity of the optimal /16
LS. Moreover, /16 FLS has a small variance. Figure 5(b)
further plots how the number of infected hosts that scans
locally changes with time. It is shown that the number first
increases with time and reaches the maximum after about 40
seconds and then decreases with time. This indicates that in
the beginning many infected hosts focus on scanning locally
and later switch to scanning globally. Therefore, FLS shows a
better performance than the original LS and can be a potential
tool for attackers.

FLS can further be extended to a “ping-pong” localized
scanning (PPLS) method by adding the following algorithm:

• An infected host that uses random scanning will switch
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Fig. 5. Simulations of /16 FLS worm propagation.

to scanning the local /l subnet when it probes a host that
has been already infected.

Thus, an infected host switches between local scanning and
global scanning, in an attempt to adapt to the underlying
distribution of uninfected vulnerable hosts. Figure 6 plots the
mean and the variance of /16 PPLS worm propagation. /16
PPLS further improves worm propagation at the late stage
and only takes 81 seconds to infected 90% vulnerable hosts.

VI. CONCLUSIONS

In this paper, we attempt to understand the behaviors of
localized-scanning (LS) worms through both analysis and
simulation. We have shown analytically that an LS worm
spreads slower than a random-scanning (RS) worm if the
vulnerable-host distribution is uniform, or faster if highly un-
even. Moreover, if the infected hosts are uniformly distributed,
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the LS method can increase the spreading speed by nearly a
non-uniformity factor compared with the RS scheme.

We have designed the optimal dynamic LS worms. The
spreading speed of such optimal LS can be approached by
the currently used LS, showing that the existing LS is near-
optimal. We have also constructed three variants of LS. While
the decision-first localized scanning (DFLS) shows a poor per-
formance empirically, the feedback localized scanning (FLS)
and the ping-pong localized scanning (PPLS) demonstrate
better performances than the original LS and can be good
candidates for worm attacks. The key of FLS and PPLS is that
a worm adapts its scanning strategies based on the feedback
from the probed host.

As part of our ongoing work, we plan to develop effective
detection/defense systems against LS worms.
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APPENDIX 1
Chebyshev Sum Inequality [13]

If a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn, then

n

n
∑

k=1

akbk ≥

(

n
∑

k=1

ak

)(

n
∑

k=1

bk

)

. (20)

The Chebyshev sum inequality follows from the rearrangement
inequality [22].

APPENDIX 2
Rearrangement Inequality [22]

Let a1, a2, · · · , an and b1, b2, · · · , bn be real numbers. Then
the sum a1b1 +a2b2 + · · ·+anbn is maximized when the two
sequences are ordered in the same way (i.e., a1 ≤ a2 ≤ · · · ≤
an and b1 ≤ b2 ≤ · · · ≤ bn) and is minimized when the two
sequences are ordered in the opposite way (i.e., a1 ≤ a2 ≤
· · · ≤ an and b1 ≥ b2 ≥ · · · ≥ bn).


