Toward Understanding Spatial Dependence on
Epidemic Thresholds in Networks

Zesheng Chen
Department of Computer Science
Indiana University - Purdue University Fort Wayne, India#&805
Email: chenz@ipfw.edu

Abstract—Social influence in online social networks bears Specifically, in the classic SIS model, a node in a network
resemblance to epidemic spread in networks and has beencan be either susceptible or infected. If the node is inficte
studied through epidemiological models. The epidemic thighold it can be cured and become susceptible with a death rate:
is a fundamental metric used to evaluate epidemic spread in th . it be infected b f its infected neiakb ’
networks. Previous work has shown that the epidemic thresHd 0, erW|§e, It can be Iniecte ) y one ot its in ep €d neigBbor
of a network is exacﬂy the inverse of the |argest eigen\/a|uef W|th a b|rth rate. When the ratio betWeen the b|rth rate aﬁd th
its adjacency matrix. In this work, however, we indicate tha death rate is greater than the epidemic threshold, thetiafec
such a threshold ignores spatial dependence among nodes andyjill become epidemic; otherwise, it will die out.
hence underestimates the actual epidemic threshold. Foduag An important discovery on epidemic spread is that in the SIS

on regular graphs, we analytically derive a more accurate . .
epidemic threshold based on spatial Markov dependence. our Model, the epidemic threshold for a network can be shown to

model shows that the epidemic threshold indeed depends onbe exactly the inverse of the largest eigenvalue of its adjey
the spatial correlation coefficient between neighboring ndes matrix [1], [6], [12]. The process of deriving this threstpl
and decreases with the death rate. Through both analysis and however, assumes that the status of nodes in the network
simulations, we show that our proposed epidemic threshold are independent of each other. Such a spatial independence

incorporates a certain spatial dependence and thus achiesea . . . . -
greater accuracy in characterizing the actual epidemic theshold @Ssumption can lead to overestimating the spreading yabilit

in regular graphs. Moreover, we extend our study to irregula  Of an infection [2], [12]. Intuitively, the status of nodes a
graphs by conjecturing a new epidemic threshold and show network are positively correlated, and two neighboringewd
that such a threshold performs significantly better than previous  tend to be either both infected or both susceptible. Moreove
work. through simulations, Givaret al. found that the epidemic
threshold from [1], [6], [12] cannot accurately reflect thotuel
epidemic threshold in some types of networks [7].
Information diffusion and influence spread in online social The goal of this work is to find a more accurate epidemic

networks (OSNs) bear resemblance to epidemic processtifieshold in networks. Specifically, we attempt to answer th
networks, which is an active interdisciplinary researchaar following questions:

among physics, mathematics, epidemiology, social science ; ; :
and cgm%u{er science [3], [8], [13]F,)[14]. Mar?; scenarioﬁn(;f * ;?gsi%?gg ||?§Eeﬂg$vnggﬁ{;‘§;ﬂ|;2des affect the epidemic
formation cascading in OSNs have been modeled through epi-. How can We de,rive a more accurf;lte epidemic threshold
dergicilogical mcl)(j(aflls. For ex?rgplg,.th([aglpopulag Iir:jear@dbec(:j taking into consideration a certain spatial dependence? ,
model on social influence, studied in [9], can be described as : ;

a speciabusceptibl e-infected-recovered (SIR) model [17]. The  ° (Cj::n tr:je birth rza\tteh an(tzlhthe qdeath r?r;ce a: elgt?tlr;e Spﬁ t|aL
cascading behavior in large blog graphs has been chawderi pendence an u§ € epidemic threshoid: .so, ow
as the classicusceptible-infected-susceptible (SIS) model in ~T0 answer these questions, we apply a mathematical mod-
[11]. Moreover, thesusceptible-infected-cured (SIC) model is €ling method and focus on approximating the complex spatial
proposed in [18] to study the propagation of conflict inford€Pendence among nodes in a network. Specifically, we apply
mation €.g., rumor and anti-rumor) in OSNSs. It is thereforeé® spatial Markov dependence assumption and derive a closed-
of great importance to study accurate mathematical modelsf®'m expression for epidemic thresholds in regular graphs.
epidemic process in networks, which can help us design n¥fe then use simulations to evaluate the performance of our
work structures, protocols, and policies to facilitate speead Proposed epidemic thresholds. We summarize our disceverie
of good information €.g., products, news, and innovations2nd contributions in the following:

and counteract the propagation of unwanted informatéam,( « We find that spatial dependence among nodes affects

|. INTRODUCTION

viruses, misinformation, and rumors). the epidemic threshold significantly and show that the
The epidemic threshold is a fundamental metric used to epidemic threshold in a network depends on not only the
evaluate epidemic spread in networks [1], [5], [6], [7], ]10 largest eigenvalue of its adjacency matrix, but also the

[12], [17], [19]. Such a threshold reflects the condition on  spatial correlation coefficient between neighboring nodes
which an infection will either die out or become epidemic. « We derive a new epidemic threshold in regular graphs



based on the assumption of spatial Markov dependeneaenonzero fraction of nodes remain infected for a long time.
Through extensive simulation studies, we show that oum previous work [1], [6], [12], it has been shown that the
proposed threshold better reflects the actual epidensipidemic threshold is
threshold than the threshold from [1], [6], [12]. 1

« We show, through both analysis and simulations, that Teind = 3y (1)
the epidemic threshold also depends on the death rate. e
It is noted that the death rate is often assumed to B&Ere Anaz(A) is the largest eigenvalue of the adjacency
1 in previous work [5], [6]. However, we find that for matrix A of the network. Moreover, when a regular graph
regular graphs with a relative small average nodal degrd® consideredq.(4) = k, and thus
the epidemic threshold decreases when the death rate 1
increases. Teyind = - @

In this work, we focus our analysis on regular graphs faiowever, this threshold is derived based on the assumpfion o
two reasons: (1) It has been shown that the epidemic thréshpldependence among nodes and has been shown to be unable

proposed in [1], [6], [12] does not work well in regular graphto accurately capture the actual epidemic threshold [7].
[7]. (2) More importantly, due to the symmetric property of

regular graphs, we can derive a closed-form expression for
the epidemic threshold. However, we also extend our studyln this section, we first present a general mathematical
to irregular graphs and conjecture a new epidemic threshdtdmework, and then derive the epidemic threshold in regula
for arbitrary networks. We apply simulations to evaluate thgraphs with the assumption of spatial independence. Finall
performance of the new epidemic threshold in a ring, an BRe apply the spatial Markov assumption to obtain a new
random graph, and a power-law topology in Section V. epidemic threshold in regular graphs.

Although we focus pnly on the SIS model in this paper,  Mathematical Framework
our conclusions on epidemic thresholds can be well extended i ] )
to other epidemiological models, such as arbitrary cascadé/Ve consider a discrete-time system and refer to the model
models studied in [17]. presented by Chen and Ji in [2] as the starting point. X.gt)

The remainder of this paper is structured as follows. Secti@€ the status of nodeat time ¢, where X;(¢) = 1 if node :
Il introduces the system model. Section Il derives a nel# infected at time/ and X;(t) = 0 otherwise. If nodei is
epidemic threshold in regular graphs, and Section IV evakjainfected at timef, it WI|| become susceptible with probability
the performance of our proposed threshold and compare$G death ratey at timez + 1, i.e,,

IIl. EPIDEMIC THRESHOLDS INREGULAR GRAPHS

with previous W(_)rk and simulatior_1 results. S_ection V extend P(X;(t+1) = 0X;(t) = 1) = 6. 3)

our study to arbitrary networks. Finally, Section VI coruds

this paper. On the other hand, if nodeis susceptible at timé, it will be
infected by its infected neighbors with probability

Il. SYSTEM MODEL

We useG(V, E) to represent a network, whelé is the set Li(t) = P(Xi(t +1) = 11X;(t) = 0). )
of nodes and® is the set of edges (or links). Specifically, weThus, the status of nodeat timet + 1 can be derived based
consider undirected graphse,, if an edge(i,j) € E, then OnN its status at time and /;(), i.e.,
(J,i) € E. Let N; = {j|(j,i) € E} be a neighborhood of p(x;(t+1)=1) = P(Xi(t) = 1)(1 — 6) + P(X:(t) = 0)Li(¢).
nodes. In this work, we focus our analysis on regular graphs, (5)
i.e,, the size of the neighborhood is the same for all nodes.
That is, | N;| = k, for Vi € V, wherek denotes the average Since an infected node will infect its susceptible neighbor
nodal degree. Typical regular graphs include ring, lattioed with birth rate 3, the probability that susceptible nodeis

> : not infected by its neighboy at timet 41 is (1 — 8)%®),
complete graphs, whede= 2, 4, and|V| 1, respectively. wherex;(t) € {0,1} is the realization ofY(¢). Hence, given

We study the problem of epidemic spread in a network usifigde; is susceptible at time and the staius of its neighbors,
the classic SIS model. Specifically, a node or a computertiie probability that it becomes infected at time- 1 is 1 —

a network can be either infected or susceptible. A susdeptif[ ;. ., (1 — B M. Letxn, = {z;(t)|j € N;}. Then,
node can be infected by one of its already infected neighbo[_?t)

with a birth rate (or infection ratep, where0 < 4 <1.0On

the other hand, an infected node can be cured and change back)_ P(Xi(t+1) = 1,Xu, (1) = xn, (£)| Xi(t) = 0)

to be susceptible with a death rate (or curing rateyvhere xN; (1)

0 < § < 1. As applied in [1], [2], [6], [12], we assume that

the birth rate (or the death rate) is the same for all nodes ard Y, P(Xw, (1) = xn, (£)| X:(t) = 0) [1 - JTa- 5)”“)]

does not change with time. xN; (1) JEN;

Let 7 = /0, the ratio between the birth rate and the death
rate. The epidemic threshold,, is defined aswhen < 7.,the =1-F [ [Ja-8%"xit) = 0] . (6)
epidemic dies out, and no node is infected; and whenr, JEN;




Setf(p) = (1—Bp)* andg(p) = M . Then the solutions

S to the above equation are the |ntersect|on points between
oBf TN [ 1 curvesf(p) andg(p). Note thatf(0) = ¢(0) =1, f(1) >0

06 Nrm);g{;). ““““““““ 1 and lim, ,; g(p) — —oo. Moreover, f'(p) = —pk(1 —

04l ] Bp)t~t < 0, and ¢'(p) = —z% < 0. Thus, whether
ool i Equation (11) has a non-zero solution depends on the sldpes o
§ | N T 1 f(p) andg(p) atp = 0. Figure 1 demonstrates two examples
s £(0) <g'(0) of f(p) and how the slopes at = 0 affect the intersection

o2 | points betweenf(p) and g(p). Hence, f’(0) < ¢'(0) for a

041 ] non-zero solution in Equation (11). That i%,> % Hence,

o6l ,

-0.8f ?(E)F;)((;S;()l.)zs and k = 2) , Te,ind = %7 (12)

---f(p) (B=0.75and k = 2)

o 01 o0z o0z 04 05 06 07 08 o8 1 which is identical to Equation (2) and has been shown in [1],

’ [6], [12] for the epidemic threshold in regular graphs. Here
we apply a different approach to obtain the same result.

Fig. 1. Demonstration of the functions ¢fp) and g(p).
C. Markov Model

Inspired by the local Markov property of Markov Random

Note that Equation (6) can be applied to arbitrary topoIé):(eld (Slel:\:’g)i%%]é]bévﬁdgi?%%ggp(%lai I\éla{_laoevndsvpeeﬂg\egee,
gies, including both regular and irregular graphs. Thediffi ! ' '

ties of finding a closed-form expression to this equation lie L) = 1- H E[ YO x5 (t) = 0]
in two aspects: (1) Spatial dependence between naddes, JEN;
Xi(t) and X;(t)'s are not independent. Intuitively, they are = 1- [ 1- B8P0 = 1Xi(1) = 0)]. (13)

positively correlated [2], [12]. Moreover, given the statof JEN,

nodei, the status of its neighbors are also not independent.

(2) Product form inside the expectatlon Wheis very small, Setp;: = P(X;(t) = 1) andp;;, = P(X;(t) = 1]X;(t) =
ey, (1- BYXi(®) a1 — B, cn, X;(1), which can simplify 0). Putting Equation (13) into Equation (5), we have

the derivation and has been applled in previous work [1], [6] } S (1 A

[12]. However, when3 is not small, such an approximationis ~ © """~ 1= 0pie = (1= i) ,gv_(l Opsie)- (14)
obviously not accurate. e

Similarly, we consider the steady state. $et= lim; o0 pi ¢

B. Independent Model andp;|; = lim_, pj|;+, SO the above equation becomes
Assuming spatial independence between nodes, X;(t)

and X;(t)'s are independent, we have pi=1—1¥8p;i — (1 —p;) H (1= Bpjji)- (15)

JEN; Consider the regular graph with an average nodal degree of
- 1_ H [1— BP(X,(t) =1)]. (7) k- Due to the symmetric property of regular graphs, we can

JEN, setp = p; for Vi, andq = p;|; for ¥(i,j) € E. Then,

Setp, ; = P(X;(t) = 1). Putting Equation (7) into Equation p=1-—3p—(1—p)(1—Bq)F. (16)

(5), we have

Definep as the spatial correction coefficient between neigh-
i1 =1 —0piy — (1 —piy) H (1 —Bpje)- (8) boring nodes andj (i.e, V(i,j) € E) in steady state. Setting

JEN; X; = limy o X;(t), Vi € V, we have
We consider the steady state. $et= lim; o p; ¢, SO the E[X;X;] — E[Xi]E[X}]
above equation becomes ' P VVar[X;[Var[X;]
pi=1-38pi— (1 —p;) [ (1 - Bpy): ©) _ PX=1X=1)-p a7
JEN; p(1—p)
When a regular graph is considered, due to its symmetri-Ehus’
property, we havey; = p; = p, for Vi, j. That is, EIX:X;]=P(X;=1,X;=1)=p(1 —p)p+1p°, (18)
p=1-0dp—(1-p(1-pp)r (10)  which leads to
which leads to . = PX;=1)-P(X;=1,X;, =1)
1—(5+1)p P(X; =0)

(1—Bp)* = -, (11) = (1-pp (19)



Therefore, Equation (16) becomes above equations into Equation (24), and consideting oo
and regular graphs, we have

p=1-bp—(1—p)l—51~-pp" (20) 2
Pu = Pu(l-0+Po[1-(1-60""] +
That is, N
_ Pio+Pp)(1-6)|1—(1— - (25
180 o = = e (Puo+ Por)(1 = 6) [1 = (1= B)(1 — B)* '] .(25)
p Note thatPOl = Pio ZP—PM, Py = 1—2p+P11, andq:

Note that wherp = 0, which means that neighboring nodeg1 — p)p. Thus, setting' = (1 —3¢)*~! = [1 - B(1—p)p]**,
are independent, Equation (21) is reduced to Equation (11we have
Seth(p) = [1—B(1—p)pl* andg(p) = U2 Then the

_ _ 2 _ 2
solutions to Equation (21) are the intersection points betw Pno= Pu(l-0)"+(1-2p+Pu)(1-r)"+
curvesh(p) and g(p). Note thath(0) = g(0) = 1, h(1) > 0, 2(p— Pu)(1 = 0)[1 — (1= pB)r]. (26)
i o o
Zr(‘f Em§7ig£pl: ;r?:j) /I\(/I(;reiozer,fg (p)<_0 gﬁf}s VC)B\Eelther Since we are interested in the epidemic threshold, we focus
PP » AEGHD) = —7—pz < U : on the case whep is very small and approaches 0 from the

Equation (21) has a non-zero solution depends on the sldpes. g + . . s
h(p) andg(p) at p 0. That is,'(0) < ¢'(0) for a non-zero right. Whenp — 0T, from Equation (18)P;; — pp by ignor

. . . ing the higher order af. Similarly, » — 1— (k—1)(1—p)Sp.
solution of Equation (21). That is, Thus, wherp — 07, the item(1 —2p+ P11)(1—7)% is in the
B 1 order ofp? and does not contain constantterm, and we

5 = k(1 —p) (22) can safely ignore it. Moreover, the itein- (1 — 8)r becomes
) . . 5 by ignoring the higher order gf. Therefore, Equation (26)
Hence, the epidemic threshold is becomes
1
(23) (20 — 6%) Py = 2B8(1—6)(p — Pur). (27)

Te,mar = .
k(1 —p)

When p > 0, Teomar > Te,ina fOr the same regular graph.
That is, ignoring the spatial dependence among nodes, 26(1—=19)

underestimates the actual epidemic threshold. On the other p= (20 — 62) +28(1 — )’ (28)
hand, 7. .- iNncorporates a certain spatial dependence and

depends on the correlation coefficient between neighbori}‘\’@enp_>

Putting P;; = pp into the above equation, we have

0T, i.e., for the case of the epidemic threshold.

nodes. It is noted that from Equation (28),< p < 1. Specifically,
whend =1, p = 0. That is, if we assume that the death rate
D. Spatial Correlation is 1 as proposed in previous work such as [5], [6], there is

. . . ) ) . no spatial dependence from our analysis. On the other hand,
To find the epidemic threshold in Equation (23), we derlVﬁowever, ifd <1, p > 0, i.e, there are spatial correlations

the correlation coefficient using the spatial Markov assump-y.nveen neighboring nodes, which can affect the epidemic
tion. Specifically, setPu,(t) = P(Xi(t) = u,X;(t) = v). nreghold. Since22 < 0 and 90 > 0, p increases when
wherew, v € {0,1}, andqu, (t) = P(X;(t +1) = 1L, X;(t+ 5 qocrease o3 increases. Another observation is that our
1) = 11Xi(t) = u, X;(t) = v) for simplifying the notation. derivedp is independent of the number of neighbdrs,, k.

Thus, Putting Equation (28) into Equation (22), we find the
Pu(t+1)= > [Puw()qu(®)], (24)  epidemic threshold in regular graphs:
w,ve{0,1}
B 24§ 29)
where Temar = 90— 1) — (k—2)8°
qui(t) = (1 —9)* It can be seen that if = 1, 7 mar = Teing. If § < 1,
howeverr; pqor > Tc,ind. MOreover, sincéﬁ% <0, Te,mar
qot)=01-06) [1-(1-5) [] -8py.e) increases wheh decreases. Thus,< § < 1 leads to
lEN; —{i}
% S Tc,ma’r < % (30)
gor(t)=(1=8) [1=(1=8) [ (1—Bpuir) -
1eN;—{j} That is, the epidemic threshold in regular graphs igtin-—1- ).
qoo(t) = |1 — H (1= B | |1- H (1 — Bpuae) IV. SIMULATION RESULTS AND PERFORMANCE
leN;—{i} leN; —{j} EVALUATION

The derivation ofg,.(¢)'s is based on the spatial Markov In_ this section,_ we .evaluate thel performance of the esti-
assumption [2] and is in the same spirit of deriviligt) Mmation of the epidemic threshold in regular graphs through
in Equation (13). Setting®,, = lim;_,~, Py, (t), putting the simulations.
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Fig. 2. Sample runs of epidemic spread in a ring grapk=(0.1 and|V'| = 1000).

A. Smulation Setup Algorithm 1 Finding epidemic threshold.
. . . . . . InpUt: 5! Blowi Bhigh
We simulate the spread of epidemics with different birth output: 7.
rates and death rates in regular graphs such as ring, laitide  \yhile Bhigh — Biow > € do
complete graphs. The simulator is based on discrete time. In 3 _ (Bhigh + Brow) /2
each time step, if nodeis infected, it will become susceptible Simulate epidemic spread usifgand §

with the probability ofé at the next time step; otherwise, it will Average the number of final infections over 1000 runs
be infected by its infected neighbgmith the probability ofg. and getavg_inf_num
Here, probabilities are created by a random number generato it 444 inf_npum > 0 then
At the beginning of simulations, we assign half of nodes Bhigh = B
to be infected. Specifically, we assume th#t is even and else
node identifier is between O and’| — 1. For ring graphs, Biow = 3
nodei’s neighbors are node§ — 1) mod |V| and (i + 1) end if

mod |V|. We assign nodes with even identifigre( nodes  end while

0,2,...,V —2) to be infected initially. For lattice graphs, we 7. = 3,,,,/§
use (4, ;) to denote node’s location, whefe< i,j < m — 1
andm? = |V|. Node (i, j) has four neighbors: nodési — 1)

mod m, j), ((i +1) mod m,j), (i,(j — 1) mod m), and 1000 runs. It can be seen that in the “mean” curve, the number
(i, (7 + 1) mod m). We assign initially infected nodes inyf jnfected nodes can be under 1 for some time steps. This
the following way: if i is even, choose nodes withbeing s pecause, in these time steps, the infection either has die
even; otherwise, choose nodes wjtheing odd. For complete 4yt for some runs among 1000 runs or has a small number of
graphs, all nodes connect to each other. We select nogggcted nodes for other runs. Note that we use the log scale
0,1,...,[V|/2 =1 to be infected initially. for the y-axis to make the spread process more visible. It can

We run each simulation long enough so that it reaches the seen that whep is small and thus the ratio betwegh
steady state. Specifically, we us2000 time steps. For each ands is below the epidemic threshold, the infection dies out
scenario, we run 1000 times using different seeds and a@erggickly with an exponential rate. When the ratio betwegn
the number of final infections over these 1000 runs. To find th@dé is around the epidemic threshold, the infection still dies
epidemic thresholdig., 7.) for a given death rate, we applyout, but with a much slower rate. When the ratio betwgen
binary search as described in Algorithm 1, wheris a very andg is above the epidemic threshold, a nonzero fraction of
small number €g., ¢ = 107%). In the input of the algorithm, nodes are infected, and the infection becomes epidemic.
Biow is @ case when the epidemic dies out, whergag;, is
a case when the epidemic survives. B. Performance Evaluation

Figure 2 shows sample runs of epidemic spread in a ringWe compare the performance of two estimators from Equa-
graph with a fixed death raté.€., 6 = 0.1) and different birth tions (12) and (29)i(e., 7¢,ina and 7¢ mqr) With simulation
rates {.e, § = 0.13, 0.14, and 0.15). The figure plots how results. Figure 3 shows epidemic thresholds with different
the number of infected nodes changes with time. In each swleath rates( < § < 1) for ring, lattice, and complete
figure, the “5%” curve indicates that the epidemic spreads goaphs. It can be seen that,,,, iS @ more accurate estimator
faster than this curve in 50 out 1000 simulation runs. Thban 7. ;,q. For example, in ring graphs, when= 0.1, the
similar definition is applied to the “25%”, “50%”", "75%”", and actual epidemic threshold is 1.4, where@as,,, = 0.95 and
“95%" curves. Moreover, the “mean” curve is the average ovet ;,, = 0.5. There is about 50% performance improvement
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Fig. 3. Epidemic thresholds of regular graphs.

from the independence model to the Markov model. There

fore, the spatial independence assumption, which has bes ‘ .
widely applied in previous work [1], [6], [12], significamtl 1.2+ * Find (R'hg)
underestimates the epidemic threshold, whereas our pedpos X B (RINQ)
Markov model can incorporate a certain spatial dependenc 1f > g (Lattice)
and predict the threshold more accurately. Moreover, while £ a g (Lattice)
Te.ina iS independent off, our model is able to catch the 5 98 o &, (Complete) ||
tendency changes with For example, as indicated by Figures g o6kt o+ 4 « & (Complete)|]
3(a) and 3(b), both simulation results and our model shov < ™ L mar
that the epidemic threshold decreases when the death reé 04l R
increases. ' £ % 508 % oa g ‘; "

We further define relative errors of the estimation f9f,,q 02 ¢ j 4 4 9 4 < E :» M
as

Teind — Te
€ind = [7eng = 7e] (31) % 0.2 0.4 0.6 0.8 1

-
¢ Death rate

Similarly, we can define,,q, for 7. 4. Figure 4 shows how

relative errors change with the death rate for three regular Fig. 4. Relative errors of epidemic thresholds in regulapfs.

graphs. We can see that for all casgg,, < €;ng Whend < 1.

When ¢ is small in ring and lattice graphs,,., is about

half of ¢;,4. On the other hand, whehis large or the graph threshold and the average number of final infections is close

is a complete graph,,.. is slightly better thane;,,. Our to 0, there are few samples of infected nodes, which makes

evaluation shows that the epidemic threshold dependsligeathe estimated correlation coefficient inaccurate. On tierot

on the spatial correlation between neighboring nodes. hand, when the average number of final infections is large, th

calculated coefficient is accurate, but may be very differen

V. EPIDEMIC THRESHOLDS INARBITRARY NETWORKS  from . in Equation (32). To obtain a reasonable estimate of
We further extend our study on epidemic thresholds i@, we apply the value of the correlation coefficient when the

irregular graphs, such as ER random graphs [4] and powawerage number of final infections is about 1. The details of

law topologies [15], [16]. Based on Equations (1) and (23), wiinding spatial correlation coefficiept are given in Algorithm

conjecture that the epidemic threshold of an arbitrary nétw 2, wherer, is the epidemic threshold when the death rate is

is 1 0, and s is a small value to increase the birth raeg(,
7-c,cor A A 1 5 (32) BS = 00005)
maz(4)(1 = pe) Figure 5 compares the analytical result of the spatial eorre

where\,,...(A) is the largest eigenvalue of the adjacency méation from Equation (28) with the empirical spatial coatébn
trix A of the network ang. is the average spatial correlatiorfrom Algorithm 2 in ring graphs with 1000 nodes and different
coefficient between neighboring nodes in steady state at theath rates(( < ¢ < 1). It can be seen that although there
epidemic threshold. is a clear gap between theoretical and empirical resulss, th
We verify our conjecture through simulations. It is notednalytical results based on the Markov assumption are able t
that at the epidemic threshold, the epidemic dies out, ansl trtcapture a certain spatial correlation and reflect the teryden
we cannot calculate the spatial correlation coefficientmfroof how correlation coefficients vary with death rates. Inesth
simulations. Moreover, whefi/J is just above the epidemic words, while the correlation coefficient is always 0 in théen
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Algorithm 2 Finding spatial correlation coefficiempt
Input: 6, 7., Bs
pendent model, the Markov model advances our understandin@utput: p.
in spatial dependence by considering the interactionsdmw Sets = 7. x § and found = 0
neighboring nodes. Moreover, Figure 5 shows that when thewhile found = 0 do
death rate is less than 0.7, the empirical spatial coroalati Simulate epidemic spread usiggand §
coefficientp. is more than 0.4, which indicates the relatively ~ Average the number of final infections over 1000 runs

strong correlations between neighboring nodes. and getavg_inf_num
We compare the performance of two estimators from Equa- Average the correlation coefficient over 1000 runs and
tions (1) and (32) i(e., 7¢,ina and 7. o) With simulation getp

results in Figure 6. The networks studied include a ring lgrap if avg_inf_num > 1 then

an ER random graph, and a power-law topology, all with 1000 Pe =P

nodes. The ER random graph is with the average nodal degree  found =1

of 7.91 and\,,..(A) = 9.03. The power-law topology is end if

generated by BRITE [20] and is with the average nodal degree S = 3+ 3,

of 3.99 and\,,..(A4) = 10.77. Similar to the simulation end while

setup for regular graphs in Section 1V, we run each scenario

1000 times with different seeds and apply the binary search

as described in Algorithm 1 to find the epidemic thresholdhe actual epidemic threshold in an arbitrary network. For
At the beginning of simulations, we select randomly half ofxample, in the power-law topology, whén= 0.5, the actual
nodes to be infected. From Figure 6, it can be seen thegidemic threshold is 0.156, whereas.,, = 0.138 and
Te,cor PErforms significantly better than. ;,,¢ in estimating 7. ;,,q = 0.093.




Similar to ¢;,4 in Equation (31), we define relative errors [3]

of the estimation fofr. ., as
[4]
_ |7—c,cor

— 7—0|
€cor = .

- (33) [5]
Figure 7 shows how relative errors vary with the death rate
for three networks. We can see thaf, < €;,4 for all cases (6]
whené < 1. Moreover, whery is small, e.,,. is close to 0.
Therefore, the actual epidemic threshold depends on ngt onl
Amaz(A), but also the spatial correlations coefficignt [7]

VI. CONCLUSIONS

In this work, we have proposed a new epidemic thresholg
by taking into consideration a certain spatial dependence.
Specifically, we have exploited the assumption of Markov
spatial dependence and shown analytically that the ep'cden{?]
threshold in regular graphs indeed depends on the cooelati
coefficient between neighboring nodes. Through extensive
simulations, we have demonstrated that our proposed epidef]
threshold better characterizes the actual threshold than t
threshold from [1], [6], [12] in arbitrary networks, such as
ER random graphs and power-law topologies. To the bdst]
of our knowledge, this is the first attempt in quantitatively
understanding the effect of spatial dependence on epidelﬁ'ﬁ
thresholds in networks.

Our discoveries on epidemic thresholds have important
implications and applications for predicting and coningl [13]
the dynamics of the epidemic spreading process. Compared
with the previous work, our proposed epidemic thresholgly
provides a more accurate prediction on whether an infection
will die out or become epidemic. Especially, whei(§ is
betweenl /4. (A) and1/Aas(A)(1 — pe) in an arbitrary
network, it is predicted in previous work [1], [6], [12] thtte
infection will become epidemic; however, we show that thge)
infection actually dies out. Moreover, an objective fuontfor
controlling epidemic spread should consider both the Earg?ﬂ]
eigenvalue of the topology and the spatial correction betwe
neighboring nodes [13].

Note thatr. .., in Equation (32) depends on the empirical
results of the spatial correlatign. Thus, it is not an analytical (18
estimator. As our on-going work, we plan to derive a closed-
form expression fop, in an arbitrary network. [19]

[15]
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