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Abstract—Social influence in online social networks bears
resemblance to epidemic spread in networks and has been
studied through epidemiological models. The epidemic threshold
is a fundamental metric used to evaluate epidemic spread in
networks. Previous work has shown that the epidemic threshold
of a network is exactly the inverse of the largest eigenvalueof
its adjacency matrix. In this work, however, we indicate that
such a threshold ignores spatial dependence among nodes and
hence underestimates the actual epidemic threshold. Focusing
on regular graphs, we analytically derive a more accurate
epidemic threshold based on spatial Markov dependence. Our
model shows that the epidemic threshold indeed depends on
the spatial correlation coefficient between neighboring nodes
and decreases with the death rate. Through both analysis and
simulations, we show that our proposed epidemic threshold
incorporates a certain spatial dependence and thus achieves a
greater accuracy in characterizing the actual epidemic threshold
in regular graphs. Moreover, we extend our study to irregular
graphs by conjecturing a new epidemic threshold and show
that such a threshold performs significantly better than previous
work.

I. I NTRODUCTION

Information diffusion and influence spread in online social
networks (OSNs) bear resemblance to epidemic process in
networks, which is an active interdisciplinary research area
among physics, mathematics, epidemiology, social science,
and computer science [3], [8], [13], [14]. Many scenarios ofin-
formation cascading in OSNs have been modeled through epi-
demiological models. For example, the popular linear-cascade
model on social influence, studied in [9], can be described as
a specialsusceptible-infected-recovered (SIR) model [17]. The
cascading behavior in large blog graphs has been characterized
as the classicsusceptible-infected-susceptible (SIS) model in
[11]. Moreover, thesusceptible-infected-cured (SIC) model is
proposed in [18] to study the propagation of conflict infor-
mation (e.g., rumor and anti-rumor) in OSNs. It is therefore
of great importance to study accurate mathematical models of
epidemic process in networks, which can help us design net-
work structures, protocols, and policies to facilitate thespread
of good information (e.g., products, news, and innovations)
and counteract the propagation of unwanted information (e.g.,
viruses, misinformation, and rumors).

The epidemic threshold is a fundamental metric used to
evaluate epidemic spread in networks [1], [5], [6], [7], [10],
[12], [17], [19]. Such a threshold reflects the condition on
which an infection will either die out or become epidemic.

Specifically, in the classic SIS model, a node in a network
can be either susceptible or infected. If the node is infected,
it can be cured and become susceptible with a death rate;
otherwise, it can be infected by one of its infected neighbors
with a birth rate. When the ratio between the birth rate and the
death rate is greater than the epidemic threshold, the infection
will become epidemic; otherwise, it will die out.

An important discovery on epidemic spread is that in the SIS
model, the epidemic threshold for a network can be shown to
be exactly the inverse of the largest eigenvalue of its adjacency
matrix [1], [6], [12]. The process of deriving this threshold,
however, assumes that the status of nodes in the network
are independent of each other. Such a spatial independence
assumption can lead to overestimating the spreading ability
of an infection [2], [12]. Intuitively, the status of nodes in a
network are positively correlated, and two neighboring nodes
tend to be either both infected or both susceptible. Moreover,
through simulations, Givanet al. found that the epidemic
threshold from [1], [6], [12] cannot accurately reflect the actual
epidemic threshold in some types of networks [7].

The goal of this work is to find a more accurate epidemic
threshold in networks. Specifically, we attempt to answer the
following questions:

• Can spatial dependence among nodes affect the epidemic
threshold? If so, how significantly?

• How can we derive a more accurate epidemic threshold,
taking into consideration a certain spatial dependence?

• Can the birth rate and the death rate affect the spatial
dependence and thus the epidemic threshold? If so, how?

To answer these questions, we apply a mathematical mod-
eling method and focus on approximating the complex spatial
dependence among nodes in a network. Specifically, we apply
a spatial Markov dependence assumption and derive a closed-
form expression for epidemic thresholds in regular graphs.
We then use simulations to evaluate the performance of our
proposed epidemic thresholds. We summarize our discoveries
and contributions in the following:

• We find that spatial dependence among nodes affects
the epidemic threshold significantly and show that the
epidemic threshold in a network depends on not only the
largest eigenvalue of its adjacency matrix, but also the
spatial correlation coefficient between neighboring nodes.

• We derive a new epidemic threshold in regular graphs



based on the assumption of spatial Markov dependence.
Through extensive simulation studies, we show that our
proposed threshold better reflects the actual epidemic
threshold than the threshold from [1], [6], [12].

• We show, through both analysis and simulations, that
the epidemic threshold also depends on the death rate.
It is noted that the death rate is often assumed to be
1 in previous work [5], [6]. However, we find that for
regular graphs with a relative small average nodal degree,
the epidemic threshold decreases when the death rate
increases.

In this work, we focus our analysis on regular graphs for
two reasons: (1) It has been shown that the epidemic threshold
proposed in [1], [6], [12] does not work well in regular graphs
[7]. (2) More importantly, due to the symmetric property of
regular graphs, we can derive a closed-form expression for
the epidemic threshold. However, we also extend our study
to irregular graphs and conjecture a new epidemic threshold
for arbitrary networks. We apply simulations to evaluate the
performance of the new epidemic threshold in a ring, an ER
random graph, and a power-law topology in Section V.

Although we focus only on the SIS model in this paper,
our conclusions on epidemic thresholds can be well extended
to other epidemiological models, such as arbitrary cascade
models studied in [17].

The remainder of this paper is structured as follows. Section
II introduces the system model. Section III derives a new
epidemic threshold in regular graphs, and Section IV evaluates
the performance of our proposed threshold and compares it
with previous work and simulation results. Section V extends
our study to arbitrary networks. Finally, Section VI concludes
this paper.

II. SYSTEM MODEL

We useG(V,E) to represent a network, whereV is the set
of nodes andE is the set of edges (or links). Specifically, we
consider undirected graphs,i.e., if an edge(i, j) ∈ E, then
(j, i) ∈ E. Let Ni = {j|(j, i) ∈ E} be a neighborhood of
nodei. In this work, we focus our analysis on regular graphs,
i.e.,, the size of the neighborhood is the same for all nodes.
That is, |Ni| = k, for ∀i ∈ V , wherek denotes the average
nodal degree. Typical regular graphs include ring, lattice, and
complete graphs, wherek = 2, 4, and |V | − 1, respectively.

We study the problem of epidemic spread in a network using
the classic SIS model. Specifically, a node or a computer in
a network can be either infected or susceptible. A susceptible
node can be infected by one of its already infected neighbors
with a birth rate (or infection rate)β, where0 < β ≤ 1. On
the other hand, an infected node can be cured and change back
to be susceptible with a death rate (or curing rate)δ, where
0 < δ ≤ 1. As applied in [1], [2], [6], [12], we assume that
the birth rate (or the death rate) is the same for all nodes and
does not change with time.

Let τ = β/δ, the ratio between the birth rate and the death
rate. The epidemic threshold,τc, is defined as whenτ ≤ τc, the
epidemic dies out, and no node is infected; and whenτ > τc,

a nonzero fraction of nodes remain infected for a long time.
In previous work [1], [6], [12], it has been shown that the
epidemic threshold is

τc,ind =
1

λmax(A)
, (1)

where λmax(A) is the largest eigenvalue of the adjacency
matrix A of the network. Moreover, when a regular graph
is considered,λmax(A) = k, and thus

τc,ind =
1

k
. (2)

However, this threshold is derived based on the assumption of
independence among nodes and has been shown to be unable
to accurately capture the actual epidemic threshold [7].

III. E PIDEMIC THRESHOLDS INREGULAR GRAPHS

In this section, we first present a general mathematical
framework, and then derive the epidemic threshold in regular
graphs with the assumption of spatial independence. Finally,
we apply the spatial Markov assumption to obtain a new
epidemic threshold in regular graphs.

A. Mathematical Framework

We consider a discrete-time system and refer to the model
presented by Chen and Ji in [2] as the starting point. LetXi(t)
be the status of nodei at time t, whereXi(t) = 1 if node i
is infected at timet and Xi(t) = 0 otherwise. If nodei is
infected at timet, it will become susceptible with probability
(or death rate)δ at time t+ 1, i.e.,

P (Xi(t+ 1) = 0|Xi(t) = 1) = δ. (3)

On the other hand, if nodei is susceptible at timet, it will be
infected by its infected neighbors with probability

Ii(t) = P (Xi(t+ 1) = 1|Xi(t) = 0). (4)

Thus, the status of nodei at time t+ 1 can be derived based
on its status at timet andIi(t), i.e.,

P (Xi(t+ 1) = 1) = P (Xi(t) = 1)(1− δ) + P (Xi(t) = 0)Ii(t).
(5)

Since an infected node will infect its susceptible neighbor
with birth rate β, the probability that susceptible nodei is
not infected by its neighborj at time t + 1 is (1 − β)xj(t),
wherexj(t) ∈ {0, 1} is the realization ofXj(t). Hence, given
nodei is susceptible at timet and the status of its neighbors,
the probability that it becomes infected at timet + 1 is 1 −∏

j∈Ni
(1− β)xj(t). Let xNi

= {xj(t)|j ∈ Ni}. Then,

Ii(t)

=
∑

xNi
(t)

P (Xi(t+ 1) = 1,XNi
(t) = xNi

(t)|Xi(t) = 0)

=
∑

xNi
(t)

P (XNi
(t) = xNi

(t)|Xi(t) = 0)



1−
∏

j∈Ni

(1− β)xj(t)





= 1− E





∏

j∈Ni

(1− β)Xj(t)

∣

∣

∣

∣

∣

∣

Xi(t) = 0



 . (6)
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Fig. 1. Demonstration of the functions off(p) andg(p).

Note that Equation (6) can be applied to arbitrary topolo-
gies, including both regular and irregular graphs. The difficul-
ties of finding a closed-form expression to this equation lie
in two aspects: (1) Spatial dependence between nodes,i.e.,
Xi(t) and Xj(t)’s are not independent. Intuitively, they are
positively correlated [2], [12]. Moreover, given the status of
node i, the status of its neighbors are also not independent.
(2) Product form inside the expectation. Whenβ is very small,∏

j∈Ni
(1−β)Xj(t) ≈ 1−β

∑
j∈Ni

Xj(t), which can simplify
the derivation and has been applied in previous work [1], [6],
[12]. However, whenβ is not small, such an approximation is
obviously not accurate.

B. Independent Model
Assuming spatial independence between nodes,i.e., Xi(t)

andXj(t)’s are independent, we have

Ii(t) = 1−
∏

j∈Ni

E
[

(1− β)Xj(t)
]

= 1−
∏

j∈Ni

[1− βP (Xj(t) = 1)] . (7)

Setpi,t = P (Xi(t) = 1). Putting Equation (7) into Equation
(5), we have

pi,t+1 = 1− δpi,t − (1− pi,t)
∏

j∈Ni

(1− βpj,t). (8)

We consider the steady state. Setpi = limt→∞ pi,t, so the
above equation becomes

pi = 1− δpi − (1− pi)
∏

j∈Ni

(1 − βpj). (9)

When a regular graph is considered, due to its symmetric
property, we havepi = pj = p, for ∀i, j. That is,

p = 1− δp− (1− p)(1− βp)k, (10)

which leads to

(1 − βp)k =
1− (δ + 1)p

1− p
. (11)

Setf(p) = (1−βp)k andg(p) = 1−(δ+1)p
1−p

. Then the solutions
to the above equation are the intersection points between
curvesf(p) andg(p). Note thatf(0) = g(0) = 1, f(1) ≥ 0,
and limp→1 g(p) → −∞. Moreover, f ′(p) = −βk(1 −
βp)k−1 < 0, and g′(p) = − δ

(1−p)2 < 0. Thus, whether
Equation (11) has a non-zero solution depends on the slopes of
f(p) andg(p) at p = 0. Figure 1 demonstrates two examples
of f(p) and how the slopes atp = 0 affect the intersection
points betweenf(p) and g(p). Hence,f ′(0) < g′(0) for a
non-zero solution in Equation (11). That is,β

δ
> 1

k
. Hence,

τc,ind =
1

k
, (12)

which is identical to Equation (2) and has been shown in [1],
[6], [12] for the epidemic threshold in regular graphs. Here,
we apply a different approach to obtain the same result.

C. Markov Model

Inspired by the local Markov property of Markov Random
Field (MRF) [21], we assume spatial Markov dependence,i.e.,
Xj(t)’s are independent givenXi(t) = 0. Then, we have

Ii(t) = 1−
∏

j∈Ni

E
[

(1− β)Xj(t)
∣

∣

∣
Xi(t) = 0

]

= 1−
∏

j∈Ni

[1− βP (Xj(t) = 1|Xi(t) = 0)] . (13)

Setpi,t = P (Xi(t) = 1) andpj|i,t = P (Xj(t) = 1|Xi(t) =
0). Putting Equation (13) into Equation (5), we have

pi,t+1 = 1− δpi,t − (1− pi,t)
∏

j∈Ni

(1− βpj|i,t). (14)

Similarly, we consider the steady state. Setpi = limt→∞ pi,t
andpj|i = limt→∞ pj|i,t, so the above equation becomes

pi = 1− δpi − (1 − pi)
∏

j∈Ni

(1− βpj|i). (15)

Consider the regular graph with an average nodal degree of
k. Due to the symmetric property of regular graphs, we can
setp = pi for ∀i, andq = pj|i for ∀(i, j) ∈ E. Then,

p = 1− δp− (1− p)(1 − βq)k. (16)

Defineρ as the spatial correction coefficient between neigh-
boring nodesi andj (i.e., ∀(i, j) ∈ E) in steady state. Setting
Xi = limt→∞ Xi(t), ∀i ∈ V , we have

ρ =
E[XiXj ]− E[Xi]E[Xj ]

√

V ar[Xi]V ar[Xj ]

=
P (Xi = 1, Xj = 1)− p2

p(1− p)
. (17)

Thus,

E[XiXj ] = P (Xi = 1, Xj = 1) = p(1− p)ρ+ p2, (18)

which leads to

q =
P (Xj = 1)− P (Xj = 1, Xi = 1)

P (Xi = 0)

= (1− ρ)p. (19)



Therefore, Equation (16) becomes

p = 1− δp− (1− p)[1− β(1− ρ)p]k. (20)

That is,

[1− β(1 − ρ)p]k =
1− (δ + 1)p

1− p
. (21)

Note that whenρ = 0, which means that neighboring nodes
are independent, Equation (21) is reduced to Equation (11).

Seth(p) = [1−β(1−ρ)p]k andg(p) = 1−(δ+1)p
1−p

. Then the
solutions to Equation (21) are the intersection points between
curvesh(p) andg(p). Note thath(0) = g(0) = 1, h(1) ≥ 0,
and limp→1 g(p) → −∞. Moreover,h′(p) = −βk(1− ρ)[1−
β(1− ρ)p]k−1 < 0, andg′(p) = − δ

(1−p)2 < 0. Thus, whether
Equation (21) has a non-zero solution depends on the slopes of
h(p) andg(p) at p = 0. That is,h′(0) < g′(0) for a non-zero
solution of Equation (21). That is,

β

δ
>

1

k(1− ρ)
. (22)

Hence, the epidemic threshold is

τc,mar =
1

k(1 − ρ)
. (23)

When ρ > 0, τc,mar > τc,ind for the same regular graph.
That is, ignoring the spatial dependence among nodes,τc,ind
underestimates the actual epidemic threshold. On the other
hand, τc,mar incorporates a certain spatial dependence and
depends on the correlation coefficient between neighboring
nodes.

D. Spatial Correlation

To find the epidemic threshold in Equation (23), we derive
the correlation coefficientρ using the spatial Markov assump-
tion. Specifically, setPuv(t) = P (Xi(t) = u,Xj(t) = v),
whereu, v ∈ {0, 1}, andquv(t) = P (Xi(t + 1) = 1, Xj(t +
1) = 1|Xi(t) = u,Xj(t) = v) for simplifying the notation.
Thus,

P11(t+ 1) =
∑

u,v∈{0,1}

[Puv(t)quv(t)], (24)

where

q11(t) = (1− δ)2

q10(t) = (1− δ)



1− (1− β)
∏

l∈Nj−{i}

(1− βpl|j,t)





q01(t) = (1− δ)



1− (1− β)
∏

l∈Ni−{j}

(1− βpl|i,t)





q00(t) =



1−
∏

l∈Nj−{i}

(1− βpl|j,t)







1−
∏

l∈Ni−{j}

(1− βpl|i,t)





The derivation ofquv(t)’s is based on the spatial Markov
assumption [2] and is in the same spirit of derivingIi(t)
in Equation (13). SettingPuv = limt→∞ Puv(t), putting the

above equations into Equation (24), and consideringt → ∞
and regular graphs, we have

P11 = P11(1− δ)2 + P00

[

1− (1− βq)k−1
]2

+

(P10 + P01)(1− δ)
[

1− (1− β)(1− βq)k−1
]

.(25)

Note thatP01 = P10 = p−P11, P00 = 1−2p+P11, andq =
(1−ρ)p. Thus, settingr = (1−βq)k−1 = [1−β(1−ρ)p]k−1,
we have

P11 = P11(1− δ)2 + (1− 2p+ P11)(1− r)2 +

2(p− P11)(1− δ)[1 − (1− β)r]. (26)

Since we are interested in the epidemic threshold, we focus
on the case whenp is very small and approaches 0 from the
right. Whenp → 0+, from Equation (18)P11 → ρp by ignor-
ing the higher order ofp. Similarly, r → 1−(k−1)(1−ρ)βp.
Thus, whenp → 0+, the item(1− 2p+P11)(1− r)2 is in the
order ofp2 and does not contain constant orp term, and we
can safely ignore it. Moreover, the item1− (1−β)r becomes
β by ignoring the higher order ofp. Therefore, Equation (26)
becomes

(2δ − δ2)P11 = 2β(1− δ)(p− P11). (27)

PuttingP11 = ρp into the above equation, we have

ρ =
2β(1− δ)

(2δ − δ2) + 2β(1− δ)
, (28)

whenp → 0+, i.e., for the case of the epidemic threshold.
It is noted that from Equation (28),0 ≤ ρ < 1. Specifically,

whenδ = 1, ρ = 0. That is, if we assume that the death rate
is 1 as proposed in previous work such as [5], [6], there is
no spatial dependence from our analysis. On the other hand,
however, if δ < 1, ρ > 0, i.e., there are spatial correlations
between neighboring nodes, which can affect the epidemic
threshold. Since∂ρ

∂δ
< 0 and ∂ρ

∂β
> 0, ρ increases when

δ decrease orβ increases. Another observation is that our
derivedρ is independent of the number of neighbors,i.e., k.

Putting Equation (28) into Equation (22), we find the
epidemic threshold in regular graphs:

τc,mar =
2− δ

2(k − 1)− (k − 2)δ
. (29)

It can be seen that ifδ = 1, τc,mar = τc,ind. If δ < 1,
however,τc,mar > τc,ind. Moreover, sincedτc,mar

dδ
< 0, τc,mar

increases whenδ decreases. Thus,0 < δ ≤ 1 leads to

1

k
≤ τc,mar <

1

k − 1
. (30)

That is, the epidemic threshold in regular graphs is in[ 1
k
, 1
k−1 ).

IV. SIMULATION RESULTS AND PERFORMANCE

EVALUATION

In this section, we evaluate the performance of the esti-
mation of the epidemic threshold in regular graphs through
simulations.
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(c) Above threshold (β = 0.15)

Fig. 2. Sample runs of epidemic spread in a ring graph (δ = 0.1 and |V | = 1000).

A. Simulation Setup

We simulate the spread of epidemics with different birth
rates and death rates in regular graphs such as ring, lattice, and
complete graphs. The simulator is based on discrete time. In
each time step, if nodei is infected, it will become susceptible
with the probability ofδ at the next time step; otherwise, it will
be infected by its infected neighborj with the probability ofβ.
Here, probabilities are created by a random number generator.

At the beginning of simulations, we assign half of nodes
to be infected. Specifically, we assume that|V | is even and
node identifier is between 0 and|V | − 1. For ring graphs,
node i’s neighbors are nodes(i − 1) mod |V | and (i + 1)
mod |V |. We assign nodes with even identifier (i.e., nodes
0, 2, . . . , V − 2) to be infected initially. For lattice graphs, we
use(i, j) to denote node’s location, where0 ≤ i, j ≤ m − 1
andm2 = |V |. Node(i, j) has four neighbors: nodes((i− 1)
mod m, j), ((i + 1) mod m, j), (i, (j − 1) mod m), and
(i, (j + 1) mod m). We assign initially infected nodes in
the following way: if i is even, choose nodes withj being
even; otherwise, choose nodes withj being odd. For complete
graphs, all nodes connect to each other. We select nodes
0, 1, . . . , |V |/2− 1 to be infected initially.

We run each simulation long enough so that it reaches the
steady state. Specifically, we use12000 time steps. For each
scenario, we run 1000 times using different seeds and average
the number of final infections over these 1000 runs. To find the
epidemic threshold (i.e., τc) for a given death rate, we apply
binary search as described in Algorithm 1, whereǫ is a very
small number (e.g., ǫ = 10−4). In the input of the algorithm,
βlow is a case when the epidemic dies out, whereasβhigh is
a case when the epidemic survives.

Figure 2 shows sample runs of epidemic spread in a ring
graph with a fixed death rate (i.e., δ = 0.1) and different birth
rates (i.e., β = 0.13, 0.14, and 0.15). The figure plots how
the number of infected nodes changes with time. In each sub-
figure, the “5%” curve indicates that the epidemic spreads no
faster than this curve in 50 out 1000 simulation runs. The
similar definition is applied to the “25%”, “50%”, ”75%”, and
“95%” curves. Moreover, the “mean” curve is the average over

Algorithm 1 Finding epidemic thresholdτc
Input: δ, βlow, βhigh

Output: τc
while βhigh − βlow > ǫ do
β = (βhigh + βlow)/2
Simulate epidemic spread usingβ andδ
Average the number of final infections over 1000 runs
and getavg inf num
if avg inf num > 0 then
βhigh = β

else
βlow = β

end if
end while
τc = βlow/δ

1000 runs. It can be seen that in the “mean” curve, the number
of infected nodes can be under 1 for some time steps. This
is because, in these time steps, the infection either has died
out for some runs among 1000 runs or has a small number of
infected nodes for other runs. Note that we use the log scale
for the y-axis to make the spread process more visible. It can
be seen that whenβ is small and thus the ratio betweenβ
andδ is below the epidemic threshold, the infection dies out
quickly with an exponential rate. When the ratio betweenβ
andδ is around the epidemic threshold, the infection still dies
out, but with a much slower rate. When the ratio betweenβ
and δ is above the epidemic threshold, a nonzero fraction of
nodes are infected, and the infection becomes epidemic.

B. Performance Evaluation

We compare the performance of two estimators from Equa-
tions (12) and (29) (i.e., τc,ind and τc,mar) with simulation
results. Figure 3 shows epidemic thresholds with different
death rates (0 < δ ≤ 1) for ring, lattice, and complete
graphs. It can be seen thatτc,mar is a more accurate estimator
than τc,ind. For example, in ring graphs, whenδ = 0.1, the
actual epidemic threshold is 1.4, whereasτc,mar = 0.95 and
τc,ind = 0.5. There is about 50% performance improvement
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Fig. 3. Epidemic thresholds of regular graphs.

from the independence model to the Markov model. There-
fore, the spatial independence assumption, which has been
widely applied in previous work [1], [6], [12], significantly
underestimates the epidemic threshold, whereas our proposed
Markov model can incorporate a certain spatial dependence
and predict the threshold more accurately. Moreover, while
τc,ind is independent ofδ, our model is able to catch the
tendency changes withδ. For example, as indicated by Figures
3(a) and 3(b), both simulation results and our model show
that the epidemic threshold decreases when the death rate
increases.

We further define relative errors of the estimation forτc,ind
as

ǫind =
|τc,ind − τc|

τc
. (31)

Similarly, we can defineǫmar for τc,mar. Figure 4 shows how
relative errors change with the death rate for three regular
graphs. We can see that for all cases,ǫmar < ǫind whenδ < 1.
When δ is small in ring and lattice graphs,ǫmar is about
half of ǫind. On the other hand, whenδ is large or the graph
is a complete graph,ǫmar is slightly better thanǫind. Our
evaluation shows that the epidemic threshold depends heavily
on the spatial correlation between neighboring nodes.

V. EPIDEMIC THRESHOLDS INARBITRARY NETWORKS

We further extend our study on epidemic thresholds to
irregular graphs, such as ER random graphs [4] and power-
law topologies [15], [16]. Based on Equations (1) and (23), we
conjecture that the epidemic threshold of an arbitrary network
is

τc,cor =
1

λmax(A)(1 − ρe)
, (32)

whereλmax(A) is the largest eigenvalue of the adjacency ma-
trix A of the network andρe is the average spatial correlation
coefficient between neighboring nodes in steady state at the
epidemic threshold.

We verify our conjecture through simulations. It is noted
that at the epidemic threshold, the epidemic dies out, and thus
we cannot calculate the spatial correlation coefficient from
simulations. Moreover, whenβ/δ is just above the epidemic
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Fig. 4. Relative errors of epidemic thresholds in regular graphs.

threshold and the average number of final infections is close
to 0, there are few samples of infected nodes, which makes
the estimated correlation coefficient inaccurate. On the other
hand, when the average number of final infections is large, the
calculated coefficient is accurate, but may be very different
from ρe in Equation (32). To obtain a reasonable estimate of
ρe, we apply the value of the correlation coefficient when the
average number of final infections is about 1. The details of
finding spatial correlation coefficientρe are given in Algorithm
2, whereτc is the epidemic threshold when the death rate is
δ, and βs is a small value to increase the birth rate (e.g.,
βs = 0.0005).

Figure 5 compares the analytical result of the spatial corre-
lation from Equation (28) with the empirical spatial correlation
from Algorithm 2 in ring graphs with 1000 nodes and different
death rates (0 < δ ≤ 1). It can be seen that although there
is a clear gap between theoretical and empirical results, the
analytical results based on the Markov assumption are able to
capture a certain spatial correlation and reflect the tendency
of how correlation coefficients vary with death rates. In other
words, while the correlation coefficient is always 0 in the inde-
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Fig. 6. Epidemic thresholds in an arbitrary network (|V | = 1000).
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Fig. 5. Correlation coefficients at the epidemic threshold in ring graphs
(|V | = 1000).

pendent model, the Markov model advances our understanding
in spatial dependence by considering the interactions between
neighboring nodes. Moreover, Figure 5 shows that when the
death rate is less than 0.7, the empirical spatial correlation
coefficientρe is more than 0.4, which indicates the relatively
strong correlations between neighboring nodes.

We compare the performance of two estimators from Equa-
tions (1) and (32) (i.e., τc,ind and τc,cor) with simulation
results in Figure 6. The networks studied include a ring graph,
an ER random graph, and a power-law topology, all with 1000
nodes. The ER random graph is with the average nodal degree
of 7.91 andλmax(A) = 9.03. The power-law topology is
generated by BRITE [20] and is with the average nodal degree
of 3.99 andλmax(A) = 10.77. Similar to the simulation
setup for regular graphs in Section IV, we run each scenario
1000 times with different seeds and apply the binary search
as described in Algorithm 1 to find the epidemic threshold.
At the beginning of simulations, we select randomly half of
nodes to be infected. From Figure 6, it can be seen that
τc,cor performs significantly better thanτc,ind in estimating
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Fig. 7. Relative errors of epidemic thresholds in arbitrarynetworks.

Algorithm 2 Finding spatial correlation coefficientρe
Input: δ, τc, βs

Output: ρe
Setβ = τc × δ andfound = 0
while found = 0 do

Simulate epidemic spread usingβ andδ
Average the number of final infections over 1000 runs
and getavg inf num
Average the correlation coefficient over 1000 runs and
get ρ
if avg inf num ≥ 1 then
ρe = ρ
found = 1

end if
β = β + βs

end while

the actual epidemic threshold in an arbitrary network. For
example, in the power-law topology, whenδ = 0.5, the actual
epidemic threshold is 0.156, whereasτc,cor = 0.138 and
τc,ind = 0.093.



Similar to ǫind in Equation (31), we define relative errors
of the estimation forτc,cor as

ǫcor =
|τc,cor − τc|

τc
. (33)

Figure 7 shows how relative errors vary with the death rate
for three networks. We can see thatǫcor < ǫind for all cases
when δ < 1. Moreover, whenδ is small, ǫcor is close to 0.
Therefore, the actual epidemic threshold depends on not only
λmax(A), but also the spatial correlations coefficientρe.

VI. CONCLUSIONS

In this work, we have proposed a new epidemic threshold
by taking into consideration a certain spatial dependence.
Specifically, we have exploited the assumption of Markov
spatial dependence and shown analytically that the epidemic
threshold in regular graphs indeed depends on the correlation
coefficient between neighboring nodes. Through extensive
simulations, we have demonstrated that our proposed epidemic
threshold better characterizes the actual threshold than the
threshold from [1], [6], [12] in arbitrary networks, such as
ER random graphs and power-law topologies. To the best
of our knowledge, this is the first attempt in quantitatively
understanding the effect of spatial dependence on epidemic
thresholds in networks.

Our discoveries on epidemic thresholds have important
implications and applications for predicting and controlling
the dynamics of the epidemic spreading process. Compared
with the previous work, our proposed epidemic threshold
provides a more accurate prediction on whether an infection
will die out or become epidemic. Especially, whenβ/δ is
between1/λmax(A) and1/λmax(A)(1 − ρe) in an arbitrary
network, it is predicted in previous work [1], [6], [12] thatthe
infection will become epidemic; however, we show that the
infection actually dies out. Moreover, an objective function for
controlling epidemic spread should consider both the largest
eigenvalue of the topology and the spatial correction between
neighboring nodes [13].

Note thatτc,cor in Equation (32) depends on the empirical
results of the spatial correlationρe. Thus, it is not an analytical
estimator. As our on-going work, we plan to derive a closed-
form expression forρe in an arbitrary network.

REFERENCES

[1] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos, “Epi-
demic thresholds in real networks,”ACM Transactions on Information
and System Security (TISSEC), vol. 10, no. 4, Jan. 2008.

[2] Z. Chen and C. Ji, “Spatial-temporal modeling of malwarepropagation
in networks,” IEEE Transactions on Neural Networks: Special Issue on
Adaptive Learning Systems in Communication Networks, vol. 16, no. 5,
Sept. 2005.

[3] D. J. Daley and J. Gani,Epidemic Modeling: An Introduction. Cam-
bridge University Press, 2001.
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