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Abstract: This work presents a closed-form expression for characterizing the spread
of a class of worm-scanning strategies through a mean-field approximation. This ex-
pression can both accurately capture the worm propagation speed before the number
of infections becomes large and explicitly demonstrate the effects of important param-
eters such as the vulnerable-host distribution and the worm-scanning strategy. Our
approach is based on the mean-field theory that investigates the average number of
infected hosts over time. Experiments are carried out based on the parameters chosen
from Witty and Code Red worms. Experimental results verify that the closed-form ex-
pression can accurately reflect the mean value of infections over time before the infected
hosts become saturated for a wide range of scanning methods including static worm-
scanning strategies and self-learning worms. Therefore, our model can help defenders
design better detection and defense systems and provide a stepping stone towards ob-
taining closed-form expressions for the propagation of more complex worm-scanning
strategies.

Keywords: security; worm-scanning strategy; modeling; closed-form expression;
mean-field theory.

1 Introduction

Worm attacks present a significant threat to the Internet.
A worm can self-propagate across the Internet in a short
time by exploiting security flaws on vulnerable hosts with-
out human intervention. Thus, worms, such as Code Red,
Slammer, and Witty, have infected hundreds of thousands
of hosts and caused enormous damages. Most worms use

a scanning technique that selects a target in an IP address
space and then sends out a probe to attempt to compro-
mise this target. Among all scanning methods, random
scanning is the simplest method that selects a target at
random in the IPv4 address space and has been widely
used by real worms. Recent studies have shown, however,
that worms can potentially apply more advanced scanning
strategies, such as hitlist scanning [17], routable scanning
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[21, 23], importance scanning [8, 7], and OPT-STATIC
[19]. These advanced scanning strategies have been demon-
strated to be able to spread a worm much faster than
the random-scanning method. Therefore, it is imperative
that defenders would model the spreading behaviors of ad-
vanced worm-scanning strategies accurately.

Vojnovic et al. point out that studying worm-scanning
methods is also of interest in a wide variety of areas such as
streaming broadcasting, database maintenance, and Web-
service membership management [19]. These applications
potentially exploit epidemic-style information dissemina-
tion techniques to spread information among participants
quickly. Therefore, modeling epidemic-style information
dissemination or worm-scanning strategies can provide fur-
ther understandings to these areas.

Most advanced worm-scanning strategies take advantage
of the non-uniform distribution of vulnerable hosts over
groups. For example, importance scanning probes the In-
ternet according to an underlying vulnerable-host distribu-
tion and forces worm scans on the most relevant parts of an
address space [8]. For these advanced scanning strategies,
the Internet is partitioned into groups according to such
standards as the IP prefix, autonomous systems, and the
first byte of IP addresses (/8 subnets). Since the distribu-
tion of vulnerable hosts over groups has been observed to
be highly uneven [10, 16, 2, 9, 19], a worm would spend
more scans on groups that contain many vulnerable hosts
to speed up worm propagation. That is, a worm scans
different groups with different likelihoods so that a group
containing more vulnerable hosts would be hit by a worm
scan with a higher probability. In this work, we focus
on a class of worm-scanning strategies where the worm
group scanning probabilities are independent of the num-
ber of infected hosts in groups, including random scan-
ning, static importance scanning [7], OPT-STATIC [19],
and self-learning worms [7].

Many approaches have been studied to model the spread
of worms using different scanning strategies, including
stochastic models [15, 12], deterministic models [17, 24,
5, 18], and optimization methods [19]. The prior work,
however, cannot explicitly characterize both the worm
propagation speed and the effect of important parameters
(e.g., the vulnerable-host distribution and worm-scanning
strategies) [3], which are key factors to worm detection and
defenses. One obvious solution to overcome the weakness
of the prior work is to derive the closed-form expression for
worm-scanning strategies. In general, however, it is nearly
impossible to derive an exact closed-form expression as the
result of the dynamic behavior of worm propagation.

The goal of this work is to characterize both the worm
spreading speed and the parameters’ effects by deriving a
closed-form expression. Specifically, we obtain a closed-
form expression from a deterministic dynamic equation
through a mean-field approximation. As pointed out by

[27, 13, 20, 1], the mean-field approach provides a way
to gain insight into the behavior of complex systems at
a relatively low cost. That is, the mean-field method fo-
cuses on the averages of the system, ignoring fluctuations.
In this work, we neglect the fluctuation of the number
of infected hosts and derive the average of the infections
in each group. We further apply the Taylor expansion
and focus on the first-order term. In this way, we trans-
form a dynamic equation to a Riccati equation [28], which
leads to a closed-form expression for the spread of worm-
scanning strategies. Furthermore, based on this closed-
form solution, we derive closed-form expressions for both
static worm-scanning strategies and self-learning worms.
It is shown that our closed-form solution explicitly demon-
strates the effects of the vulnerable-host distribution and
the worm-scanning strategies. To verify our closed-form
expression, we simulate the spread of worms based on the
parameters chosen from Witty and Code Red worms. We
then compare our expression with the extension of the an-
alytical active worm propagation (AAWP) model [5]. Ex-
perimental results show that the closed-form expression
can characterize the spread of both static worm-scanning
strategies and self-learning worms, before infected hosts
become saturated (even beyond the early stage).

Characterizing the worm propagation speed before in-
fections become large is a key element to worm detection
and defenses [22]. If a worm can compromise a large num-
ber of hosts before it is detected, it is too late for defenders
to slow down the worm. Therefore, it is critical that de-
fenders would detect and fight against a worm before it has
infected too many hosts. Thus, our closed-form expression
provides an accurate picture for defenders to understand
the average of the worm spreading speed in the time win-
dow of detection and defenses. Moreover, although in this
work we assume that the worm group scanning probabili-
ties do not adapt to the number of infected hosts in groups,
our approach may provide a stepping stone towards find-
ing closed-form expressions for the propagation of dynamic
and adaptive strategies, which are more complex and dif-
ficult to obtain.

The remainder of this paper is structured as follows.
Section 2 introduces the background of this work. Next,
Section 3 derives a closed-form expression for the spread of
worm-scanning strategies. Section 4 provides the discus-
sions of our designed closed-form expression. Section 5 fur-
ther verifies our expression through experiments. Section
6 describes the related work. Finally, Section 7 concludes
this paper.

2 Background and Notations

In this section, we provide the background on worm-
scanning strategies and deterministic worm-propagation
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Figure 1: Illustration of worm-scanning strategies.

models, and introduce the notations used in this paper.

2.1 Worm-Scanning Strategies

A fundamental characteristic of Internet worms is self-
propagation, i.e., a worm can compromise vulnerable hosts
and use them to attack other victims. Moreover, a key
component of the epidemic-style attacks is scanning, i.e.,
how a worm finds vulnerable hosts. In general, worm-
scanning strategies can be abstracted and illustrated in
Figure 1. Here, the Internet contains Ω IP addresses (i.e.,
Ω = 232) and totally N vulnerable hosts, and is parti-
tioned into m groups. Group i (i = 1, 2, · · · ,m) contains
Ωi IP addresses and totally Ni vulnerable hosts, where∑m

i=1 Ωi = Ω and
∑m

i=1 Ni = N . A worm scans group
i with probability qi(t) at time t, where

∑m
i=1 qi(t) = 1.

Thus, qi(t)’s form a group scanning distribution at time t.
Once a worm scan hits a group, this scan would select the
targets in the group uniformly. The notations used in this
paper are summarized in Table 1.

Based on the characteristics of qi(t)’s, the worm-
scanning strategies can be classified into two cate-
gories: static worm-scanning strategies and dynamic
worm-scanning strategies. If qi(t)’s are fixed at all time,
i.e., qi(t) = qi, such strategies are called static worm-
scanning strategies. Several widely studied strategies be-
long to this category. For example,

• Random scanning (RS): Such a scanning method
chooses target IP addresses uniformly and has been
used by Code Red, Slammer, and Witty worms. For
RS,

qi(t) = qi =
Ωi

Ω
, i = 1, 2, · · · ,m. (1)

• Static importance scanning (STATIC-IS) [7]: Such a
strategy exploits the underlying highly uneven distri-
bution of vulnerable hosts, and qi’s depend on Ni’s

and Ωi’s. Basically, if Ni/Ωi is large, qi would be
large also.

• OPT-STATIC [19]: Such a method minimizes the
number of worm scans required to reach a predeter-
mined faction of vulnerable hosts. This method spec-
ifies to scan a set A of initially densest groups. The
necessary condition for a set A to be optimal is that
the initial density of uninfected vulnerable hosts in
every group in A must be larger than the final density
of uninfected vulnerable hosts in A (see [19] for the
expressions of qi and A).

• SUBOPT-STATIC: Such a strategy is called uniform
random sampling of a subset of subnets A in [19].
Here, A is obtained from OPT-STATIC. SUBOPT-
STATIC only scans targets in groups A, but samples
these targets uniformly.

If qi(t)’s vary with time, such strategies are called dy-
namic worm-scanning strategies. Dynamic strategies can
further be classified into two cases: qi(t)’s are indepen-
dent of the number of infected hosts in groups at time t
(i.e., Ii(t)’s), such as self-learning worms in [7]; and qi(t)’s
depend on Ii(t)’s, such as localized scanning [14, 4], dy-
namic important scanning [7], and K-FAIL [19]. For the
self-learning worm in [7], the propagation process can be
divided into two stages: the learning stage where the worm
uses RS, i.e., qi(t) = Ωi/Ω; and the importance-scanning
stage where the worm uses STATIC-IS, i.e., qi(t) switches
from Ωi/Ω to qi that depends on estimated Ni/N and Ωi.

In this paper, we focus on static worm-scanning strate-
gies and dynamic worm-scanning strategies where the
group scanning distribution is independent of the number
of infected hosts in groups. That is, we assume that qi(t)’s
are independent of Ii(t)’s.

2.2 Deterministic Worm-Propagation Models

Most analytical models of worm propagation have used
deterministic dynamic equations to characterize the spread
of Internet worms. Specifically, many dynamic equations
are designed to model the infection behavior of worms that
is known as the susceptible → infected (SI) model [17, 24,
8]. The SI model assumes that each vulnerable host has
two statuses: susceptible or infected. Once infected, the
host remains infected.

There are two types of deterministic worm-propagation
models. The first type is based on continuous time and
differential equations, and is called the epidemic model.
For example, assuming that there are I(t) infected hosts
at time t and an infected host sends out s scans per unit
time, RS can be characterized by the following differential
equation [24]

dI(t)
dt

= sI(t)
N − I(t)

Ω
. (2)
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Table 1: Notations used in this paper.
Notation Explanation
N Total number of vulnerable hosts
Ω Address space that a worm scans, i.e., Ω = 232

m Number of groups in the Internet
Ni Number of vulnerable hosts in group i and

∑m
i=1 Ni = N

Ωi Address space in group i and
∑m

i=1 Ωi = Ω
s Worm scanning rate: Number of scans that an infected host sends per unit time
qi(t) Group scanning distribution: Probability of a worm scan hitting group i at time t
I(t) Total number of infected hosts at time t
Ii(t) Number of infected hosts in group i at time t and

∑m
i=1 Ii(t) = I(t)

Si(t) Number of uninfected vulnerable hosts in group i at time t and Si(t) = Ni − Ii(t)
u(t) Total number of worm scans sent by all infected hosts by time t: u(t) = s

∫ t

0
I(x)dx

ri(t) Average group scanning distribution by time t: ri(t) = 1
t

∫ t

0
qi(x)dx

This equation is a logistic equation [29] and can lead to a
well-known closed-form solution [5]:

t =
Ω
sN

ln
I(t)[N − I(0)]
I(0)[N − I(t)]

(3)

or

I(t) =
I(0)N

I(0) + [N − I(0)]e−sNt/Ω
. (4)

The second type of deterministic worm-propagation
models is based on discrete time and difference equations.
For example, the AAWP model, developed by Chen et
al. in [5], has been extended to characterize the spread
of importance-scanning worms as follows [8]

Ii(t + 1) = Ii(t) + [Ni − Ii(t)]

[
1−

(
1− 1

Ωi

)sI(t)qi(t)
]

,

(5)
where Ii(t) is the number of infected hosts in group i at
time t and I(t) =

∑m
i=1 Ii(t).

The AAWP model and its extensions have been shown to
be able to model worm propagation accurately [5, 14, 8].
Based on the dynamic equation, however, it is difficult
to understand the effects of important parameters (e.g.,
Ni’s and qi(t)’s) on worm propagation. Therefore, in this
work we attempt to derive a closed-form expression from
the deterministic dynamic equation to characterize both
the worm propagation speed and the parameters’ effects
explicitly.

3 Deriving a Closed-Form Expression

In this section, we derive a closed-form expression for mod-
eling the spread of worm-scanning strategies through a
mean-field approximation.

3.1 Deterministic Dynamic Differential Equation

We assume that at time t the group scanning distribu-
tion qi(t) is independent of the number of infected hosts in
group i (i.e., Ii(t)). Let s be the worm scanning rate or the
rate at which an infected host scans an address space for
a vulnerable host. Suppose that there are Si(t) uninfected
vulnerable hosts and Ii(t) infected hosts in group i at time
t, where Si(t) + Ii(t) = Ni. At time t, there are sI(t)qi(t)
worm scans hitting group i, where I(t) is the total number
of infected hosts in the Internet and I(t) =

∑m
i=1 Ii(t). If a

worm scan hits group i at time t, this scan will hit an un-
infected vulnerable host with probability Si(t)/Ωi. Thus,
Ii(t) can be characterized by the classic SI epidemic model
and follows a dynamic differential equation:

dIi(t)
dt

= sI(t)
Si(t)qi(t)

Ωi
. (6)

Summing up i = 1, 2, · · · , m and using Si(t) = Ni − Ii(t),
we have

dI(t)
dt

= sI(t)

(
m∑

i=1

Niqi(t)
Ωi

−
m∑

i=1

Ii(t)qi(t)
Ωi

)
. (7)

Note that if a worm uses RS, i.e., qi = Ωi/Ω, Equation (7)
becomes Equation (2) and leads to the closed-form solu-
tion, i.e., Equation (3) or Equation (4). In general, how-
ever, it is difficult to derive a closed-form expression of I(t)
based on Equation (7).

3.2 Mean-Field Approximation

To get a closed-form expression of I(t), we define u(t) as
the total number of worm scans sent by all infected hosts
by time t, i.e.,

u(t) = s

∫ t

0

I(x)dx. (8)
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We also define ri(t) as the average group scanning distri-
bution by time t, i.e.,

ri(t) =
1
t

∫ t

0

qi(x)dx. (9)

Note that
∑m

i=1 ri(t) = 1. Since there are in average
u(t)ri(t) scans that hit group i among u(t) scans, the mean
value of the number of infected hosts in group i can be de-
rived by

Ii(t) = Si(0)

[
1−

(
1− 1

Ωi

)u(t)ri(t)
]

, (10)

where Si(0) is the number of uninfected vulnerable hosts
in group i at time 0 and 1−(1− 1/Ωi)

u(t)ri(t) is the proba-
bility that a vulnerable host in group i is hit by at least one
worm scan. For most cases, Si(0) ≈ Ni. Note that Equa-
tion (10) applies a mean-field approach that neglects the
fluctuation of the number of infections in group i and fo-
cuses on the average. We then apply the Taylor expansion
and get

Ii(t) = u(t)
Si(0)ri(t)

Ωi
+ O

(
1

Ω2
i

)
. (11)

Assuming that Ωi >> 1 and u(t)ri(t) is not very large, we
can obtain the approximation of the average of the number
of infected hosts in group i or the mean-field approxima-
tion:

Ii(t) ≈ u(t)
Si(0)ri(t)

Ωi
. (12)

Summing up i = 1, 2, · · · ,m, we have

u(t) =
I(t)∑m

i=1 Si(0)ri(t)/Ωi
. (13)

Plugging Equation (12) into Equation (7), we have

dI(t)
dt

= sI(t)

(
m∑

i=1

Niqi(t)
Ωi

− u(t)
m∑

i=1

Si(0)qi(t)ri(t)
Ω2

i

)
.

(14)
Applying Equation (13), Equation (14) becomes

dI(t)
dt

= sI(t)

(
m∑

i=1

Niqi(t)
Ωi

−
∑m

i=1 Si(0)qi(t)ri(t)/Ω2
i∑m

i=1 Si(0)ri(t)/Ωi
I(t)

)
.

(15)
Setting

C(t) = s

m∑

i=1

Niqi(t)
Ωi

(16)

D(t) =
∑m

i=1 Niqi(t)/Ωi ·
∑m

i=1 Si(0)ri(t)/Ωi∑m
i=1 Si(0)qi(t)ri(t)/Ω2

i

, (17)

Equation (15) becomes

dI(t)
dt

=
C(t)
D(t)

I(t) [D(t)− I(t)] . (18)

The above differential equation is known as the Riccati
equation [28] and can be solved in closed form.

Theorem 1. The closed-form solution for I(t) is given by

I(t) =
I(0)eF (t)

1 + I(0)
∫ t

0
E(x)eF (x)dx

, (19)

where

E(t) =
C(t)
D(t)

(20)

F (t) =
∫ t

0

C(x)dx. (21)

Proof: Setting E(t) = C(t)/D(t) and I(t) = 1/W (t), we
obtain the linear differential equation from Equation (18)

dW (t)
dt

+ C(t)W (t) = E(t). (22)

Multiplying e
∫ t
0 C(x)dx to both sides of the above equation,

we have

d

dt

[
W (t)e

∫ t
0 C(x)dx

]
= E(t)e

∫ t
0 C(x)dx. (23)

Integrating from 0 to t and setting F (t) =
∫ t

0
C(x)dx,

Equation (23) becomes

W (t) = e−F (t)

[
W (0) +

∫ t

0

E(x)eF (x)dx

]
. (24)

Therefore,

I(t) =
I(0)eF (t)

1 + I(0)
∫ t

0
E(x)eF (x)dx

. (25)

4 Discussions

In this section, we apply the closed-form expression to
static worm-scanning strategies and self-learning worms.

4.1 Static Worm-Scanning Strategies

For static worm-scanning strategies, qi(t) = qi, and ri(t) =
qi. Thus, the solution for I(t), i.e., Equation (19), becomes

I(t) =
I(0)D

I(0) + [D − I(0)]e−Ct
, (26)
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where

C = C(t) = s

m∑

i=1

Niqi

Ωi
(27)

D = D(t) =
∑m

i=1 Niqi/Ωi ·
∑m

i=1 Si(0)qi/Ωi∑m
i=1 Si(0)q2

i /Ω2
i

. (28)

Equation (26) can also be written as

t =
1
C

ln
I(t)[D − I(0)]
I(0)[D − I(t)]

, (29)

i.e., the time required for a worm to infect a certain num-
ber of vulnerable hosts. Note that if a worm uses RS,
i.e., qi = Ωi/Ω, C = sN/Ω and D = N , and Equations
(26) and (29) are then reduced to Equations (4) and (3),
respectively.

In Equations (26) and (29), C and D are two important
factors that control the spreading dynamics of a worm.
Meanwhile, C and D are determined by the following pa-
rameters: the scanning rate s, the vulnerable-host distribu-
tion Ni’s, the distribution of initially uninfected vulnerable
hosts Si(0)’s, and the worm-scanning strategy qi’s. Thus,
Equations (26) and (29) explicitly show how these param-
eters affect worm spreading. Specifically, when t is small
and thus I(t) is small, [D−I(0)]/[D−I(t)] is close to 1, and
therefore C dominates the worm propagation speed. It is
noted that C is indeed the infection rate of a worm that is
derived in [8]. As a result, when a worm has a larger infec-
tion rate, it can spend much less time to infect the same
number of vulnerable hosts at the early stage. Moreover,
max{C} = s·maxi{Ni/Ωi}, i.e., a worm achieves the max-
imum infection rate when the worm scans only the group
containing the largest number of the vulnerable-host den-
sity. In this case, the worm uses an extremely non-uniform
scanning method. When t and I(t) become larger, D has a
greater effect on worm propagation. Since for most cases,
Si(0) ≈ Ni or Si(0) ∝ Ni,

D =
(
∑m

i=1 Niqi/Ωi)
2

∑m
i=1 Niq2

i /Ω2
i

≤ N (30)

by the Cauchy-Schwarz inequality, where the equality
holds if and only if qi = Ωi/Ω, i.e., a worm uses RS. Thus,
if a worm uses a more uniform scanning method, D be-
comes larger and gets close to N , and [D−I(0)]/[D−I(t)]
becomes smaller, which leads to smaller t in Equation (29).
Therefore, C and D affect worm propagation in very dif-
ferent ways.

It has been observed that if a worm uses a non-uniform
scanning method, D < N from Inequality (30). Mean-
while, from Equation (26), it can be seen that I(t) ≤ D
even when t is very large, assuming D ≥ I(0). Thus, for
the model described by Equation (26), a worm cannot in-
fect more than D vulnerable hosts. This may not be valid,
since a worm can infect all N vulnerable hosts under the

condition that qi > 0, if Ni > 0 for ∀i. Therefore, when
t is very large, the model may not describe the worm be-
havior accurately. The reason for this inaccuracy is that in
Equation (12), we assume that u(t)ri(t) is not very large
and ignore the higher order terms of the Taylor expansion.
Nevertheless, based on the above analysis, if a worm uses
a more uniform scanning method, D gets closer to N , and
our model is more accurate.

4.2 Self-Learning Worms

For a self-learning worm described in [7], the worm uses RS
in the learning stage and STATIC-IS in the importance-
scanning stage. That is,

qi(t) =
{

Ωi

Ω , t ≤ t0;
qi, t > t0,

(31)

where t0 is the time when the worm decides to switch from
RS to STATIC-IS and qi’s are the group scanning distri-
bution used by STATIC-IS.

One way to derive the closed-form solution for self-
learning worms is to use Equation (19) directly. However,
we find that it is difficult to derive the closed-form ex-
pression for

∫ t

0
E(x)eF (x)dx. Therefore, we follow another

method and exploit the closed-form solutions for RS and
static worm-scanning strategies, i.e., Equations (4) and
(26). Assuming that at time t0, the number of infected
hosts in group i is proportional to the number of vulnera-
ble hosts in group i, i.e., Ii(t0) = NiI(t0)/N , we obtain a
closed-form expression for self-learning worms

I(t) =

{
I(0)N

I(0)+[N−I(0)]e−sNt/Ω , t ≤ t0;
I(t0)D1

I(t0)+[D1−I(t0)]e−C(t−t0) , t > t0,
(32)

where C follows Equation (27) and

D1 =
∑m

i=1 Niqi/Ωi ·
∑m

i=1 Si(t0)qi/Ωi∑m
i=1 Si(t0)q2

i /Ω2
i

, (33)

where Si(t0) = Ni − Ii(t0) = (1 − I(t0)/N)Ni. In this
way, the solution for self-learning worms can be regarded
as the simple extension from static worm-scanning strate-
gies and has the similar properties. That is, we expect
the closed-form expression can accurately model the self-
learning worm spreading before the number of infected
hosts becomes saturated, but may fail to characterize worm
propagation at the very late stage.

5 Experimental Results

In this section, we evaluate our designed closed-form ex-
pression through experiments. In our experiments, we sim-
ulate the propagation of worms based on the parameters
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(a) n = 0.
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(b) n = 0.25.
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(c) n = 0.5.
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Figure 2: Performance comparison of the closed-form expression and the extension of the AAWP model for Witty-worm
propagation (N = 55, 909, s = 1, 200 per second, m = 256, and I(0) = 10).

chosen from Witty and Code Red worms. The Witty worm
has a vulnerable population N = 55, 909 and a scanning
rate s = 1, 200 scans per second [16], whereas the Code
Red worm has N = 360, 000 and s = 358 scans per minute
[22]. We obtain the distribution of Witty-worm victims
from CAIDA [26]. We ignore the effect of disk damages on
the Witty worm propagation. Since the Code Red worm
attacks Web servers, we assume that the victims of the
Code Red worm have the same distribution as DShield
data with port 80 [25, 2]. Then, we compare worm prop-
agation characterized by our closed-form expression (i.e.,
Equation (19)) with worm spreading described by the ex-
tension of the AAWP model (i.e., Equation (5)).

5.1 Static Worm-Scanning Strategies

We first study static worm-scanning strategies. In our set-
ting, static worm-scanning strategies exploit the /8 subnet
distribution (i.e., m = 256 and Ω1 = Ω2 = · · · = Ω256 =
224) or the /16 subnet distribution (i.e., m = 216 and
Ω1 = Ω2 = · · · = Ω65536 = 216). We consider a group of
static strategies where qi’s relate to Ni’s explicitly, i.e.,

qi =
Nn

i∑m
i=1 Nn

i

∝
(

Ni

N

)n

(34)

where n ≥ 0, representing how strongly qi depends on
Ni/N . If n = 0, qi’s are equal and are independent of
Ni/N ’s. In this case, the worm uses RS. When n becomes
larger, the worm would focus more scans on the groups
with a large number of vulnerable hosts, which represents
a more non-uniform scanning strategy. Figure 2 compares
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Figure 3: Performance comparison of the closed-form ex-
pression and the extension of the AAWP model for Code-
Red-worm propagation (N = 360, 000, s = 358 per minute,
m = 216, and I(0) = 1).

our closed-form expression (i.e., Equation (26)) with the
extension of the AAWP model for Witty-worm propaga-
tion with m = 256, I(0) = 10, and n = 0, 0.25, 0.5,
and 1. It can be seen that when n = 0, i.e., the worm
uses RS, the curves for both the expression and the model
overlap. When n increases, the closed-form expression de-
scribes worm behaviors exactly the same as the extension
of the AAWP model before I(t) becomes very large. As
we expect, when I(t) is very large, our designed closed-
form expression cannot characterize worm dynamics as a
result of the effect of the parameter D. Before the infected
hosts become saturated, however, the closed-form expres-
sion characterizes the average of the number of infected
hosts accurately. Moreover, the model is more accurate
if the scanning strategy is more uniform (i.e., when n is
smaller). We perform the same comparisons in Figure 3
for Code-Red-worm spreading with m = 216, I(0) = 1,
and n = 0.1, 0.25, and 0.4. Similarly, we observe that be-
fore Code Red worms infect a large number of vulnerable
hosts, the closed-form expression can accurately model the
average of the number of infected hosts.

We further apply our closed-form expression to de-
scribe other static strategies such as OPT-STATIC and
SUBOPT-STATIC proposed in [19]. We simulate Witty-
worm propagation with m = 256 and I(0) = 10. It can
be seen from Figure 4 that our designed closed-form ex-
pression can faithfully capture the dynamic worm behav-
iors. Furthermore, we observe that the spreading speeds
of these two strategies are very different. While the OPT-
STATIC strategy takes only 102 seconds to infect 90% vul-
nerable hosts, the SUBOPT-STATIC strategy requires 155
seconds. The optimization method proposed in [19], how-
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Figure 4: Two static scanning strategies from [19] (N =
55, 909, s = 1, 200 per second, m = 256, and I(0) = 10)).
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Figure 5: Self-learning worm propagation (N = 360, 000,
s = 358 per minute, m = 256, I(0) = 1, and n = 0.5).

ever, cannot characterize this difference in the worm prop-
agation speed.

5.2 Self-Learning Worms

We next simulate self-learning worms. We consider a
self-learning worm using the parameters of the Code Red
worm. We assume that the worm starts from one infected
host (i.e., I(0) = 1), uses RS to spread and collect the
information on the distribution of vulnerable hosts dur-
ing the learning stage, and then switches to STATIC-IS at
time t0. Here, we assume that the worm can estimate the
vulnerable-host distribution accurately at time t0 and uses
n = 0.5 in Equation (34) for STATIC-IS as proposed in [7].
Figure 5 compares our closed-form expression (i.e., Equa-

8



tion (32)) with the extension of the AAWP model with
m = 256 and I(t0) = 500, 1,000, and 2,000. Similarly, it
can be seen that our expression can reflect the dynamic
behavior of self-learning worms before the infected hosts
become saturated.

6 Related Work

Several approaches have been proposed to model the
spread of worms. Stochastic models have been studied
to capture the variance of worm propagation at the early
stage [15, 12]. Stochastic models, however, may require ex-
tensive computations and focus only on the early stage of
worm spreading. Instead, most analytical models of worm
propagation have used deterministic dynamic equations,
ignoring the variance of worm infection [17, 24, 5, 18].
Moreover, the deterministic models have been widely ap-
plied to worm detection and defenses [11, 22, 18]. Based on
dynamic equations, however, it is difficult to understand
the effects of important parameters (e.g., the vulnerable-
host distribution and the group scanning distribution) on
worm propagation. Furthermore, except for extreme cases
(e.g., random scanning), it is nearly impossible to derive
an exact closed-form expression from the dynamic equa-
tion. An alternate approach to both model worm propa-
gation and capture parameters’ effects has been proposed
by Vojnovic et al. [19]. The authors formulate worm in-
fection as an optimization problem and focus on the num-
ber of worm scans required to reach a predetermined frac-
tion of vulnerable hosts. It is pointed out, however, that
two worm-scanning strategies can use the same number of
worm scans to infect the same number of hosts, but differ
significantly in the worm propagation speed in [3]. There-
fore, to characterize both the worm propagation speed and
the parameters’ effects, we derive a closed-form expression
from the deterministic dynamic equation through a mean-
field approximation in this work.

Mean-field approaches [27, 13] stem from statistical me-
chanics and have been applied to networking and network
security areas. For example, Wang uses a mean-field the-
ory to analyze Internet router buffer sizing [20]. Baccelli
et al. study the mean-field model to understand the in-
teraction between HTTP flows using TCP [1]. Chen et
al. model the spread of topological-scanning malwares by
following the spirit of mean-field approximations [6]. It
is noted that the topological scanning studied in [6] is a
topology-based strategy and is very different from a scan-
based method considered in this paper.

7 Conclusions

In this paper, we have presented a closed-form expression
for modeling the propagation of a class of worm-scanning
strategies. Our expression can both accurately character-
ize the worm propagation speed in the time window of
detection and defenses and explicitly capture the effects
of the vulnerable-host distribution and the worm-scanning
method. Therefore, our solution can complement with the
existing models such as stochastic models [15, 12], deter-
ministic models [17, 24, 5, 18], and optimization methods
[19].

As part of our ongoing work, we plan to extend our ap-
proach to study the closed-form expressions for modeling
the spread of dynamic and adaptive worm-scanning strate-
gies such as localized scanning and dynamic importance
scanning.
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