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A Self-Learning Worm
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Worm Scanning Methods

� Topological scanning

� Rely on information contained in the victim host

� Morris worm

� Random scanning

� Select target IPv4 addresses at random

� Code Red v2 and Slammer worms

� Localized scanning

� Preferentially search for targets on “local” address space

� Code Red II and Nimda worms
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Advanced Worm Scanning Methods

� Hitlist scanning [SPW02]
� Collect a list of vulnerable hosts in advance

� Flash worm

� Routable scanning [WVGK04,ZTGC05]
� Exploit the information provided by BGP routing table

� Importance scanning [CJ05]
� Use the knowledge of vulnerable-host group distribution

The use of additional information by an attacker 
can help a worm speed up the propagation
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Problem

� Information on vulnerable hosts may not be 
easy to collect before a worm is released

� What information can a worm learn? 

� How to learn while a worm is propagating?

� How virulent is the resulting worm?

� How can we defend?
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Outline

� Importance-scanning worm

� Non-uniform vulnerable-host distribution

� A self-learning worm

� Learning stage 

� Importance-scanning stage

� Performance evaluation

� Defense
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Importance Sampling

� Importance scanning is inspired by importance 
sampling in statistics

� Importance sampling is used to reduce the sample 
size for accurately estimating the probability of 
rare events

� Importance sampling biases the underlying 
sampling density

Key observation: The vulnerable-host 
distribution is highly non-uniform
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Web-Server Distribution
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Importance Scanning

� Hitting a vulnerable host in a large population 
is a rare event

� Probing a target is equivalent to obtaining a 
sample in IP address space

� Sample the IP address space according to a 
given vulnerable-host distribution

� Reduce the number of scans needed for 
attacking a large number of vulnerable hosts
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Importance-Scanning Worm

� pg(i): group distribution
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Importance Scanning

� Optimal dynamic importance scanning

� pg*(i)’s vary with time → not realistic

� All infected hosts scan the group containing 
the largest number of uninfected vulnerable 
hosts

� Performance upper-bound for comparison

� Static importance scanning

� pg*(i)’s are fixed at all time → realistic
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Optimal Static Importance Scanning

� What are pg*(i)’s given pg(i)’s

� A new metric: average number of worm 
scans required until the first scan hits a 
random-chosen vulnerable host

� Lagrangian optimization
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Outline

� Importance-scanning worm

� Non-uniform vulnerable-host distribution

� A self-learning worm

� Learning stage 

� Importance-scanning stage

� Performance evaluation

� Defense
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A Self-Learning Worm

� Vulnerable-host distribution is unavailable 
before a worm is released

� Self-learn vulnerable-host distribution 
information while propagating

� Learning stage and importance-scanning
stage
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A Self-Learning Worm System
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Learning stage: perform random 
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Estimating Group Distribution

� A simple proportion estimator

� Unbiased

� Maximum likelihood estimator

� Mean square error is bounded by

L

L
ip i

g =)(ˆ

L

1

� L: # of measurements (clients’ IP 
addresses)

� Li: # of clients’ IP addresses from 
group i among all L addresses
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Outline

� Importance-scanning worm

� Non-uniform vulnerable-host distribution

� A self-learning worm

� Learning stage 

� Importance-scanning stage

� Performance evaluation

� Defense
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Performance Evaluation

� Parameters comparable to those of Code Red v2
� N=360,000 and s=358 per minute

� Vulnerable host has the same distribution as web servers

� Extended Analytical Active Worm Propagation (AAWP) 
model for importance–scanning worms [CGK03,CJ05]
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Static Importance Scanning Strategies
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Sample Size (L)
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Sample Size of 500

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

 Time t (second)

 N
u

m
b

e
r 

o
f 

in
fe

c
te

d
 h

o
s
ts

 Ideal p
g
(i)

 Estimated p
g
(i) (mean)

 Estimated p
g
(i) (worst case)

 Estimated p
g
(i) (best case)



WORM’05 22

Performance of Self-Learning Worm
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Performance of Self-Learning Worm (2)
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Outline

� Importance-scanning worm

� Non-uniform vulnerable-host distribution

� A self-learning worm

� Learning stage 

� Importance-scanning stage

� Performance evaluation

� Defense
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Defending Against Self-Learning Worms

� Attackers control pg* (i)

� Defenders customize pg(i) 

� A game exists between attackers and 
defenders

� It shows that best strategy for defenders is 
to scatter applications uniformly in the 
entire IP-address space from the view of 
game theory
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Conclusions

� A self-learning worm 
� Learning stage: Learn /8 subnet distribution 

well using a proportion estimator and as few 
as 500 samples

� Importance-scanning stage: Use optimal static 
importance scanning method

� Game between attackers and defenders
� Applications need to be uniformly distributed 

in the whole IPv4 address space
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