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Abstract—This work provides an information-theoretic view to
better understand the relationships between aggregated vulnera-
bility information viewed by attackers and a class of randomized
epidemic scanning algorithms. In particular, this work investi-
gates three aspects: (a) a network vulnerability as the non-uniform
vulnerable-host distribution, (b) threats, i.e., intelligent malwares
that exploit such a vulnerability, and (c) defense, i.e., challenges
for fighting the threats. We first study five large data sets and
observe consistent clustered vulnerable-host distributions. We
then present a new metric, referred to as the non-uniformity factor,
that quantifies the unevenness of a vulnerable-host distribution.
This metric is essentially the Renyi information entropy that
unifies the non-uniformity of a vulnerable-host distribution with
different malware-scanning methods. Next, we draw a relation-
ship between Renyi entropies and randomized epidemic scanning
algorithms. We find that the infection rates of malware-scanning
methods are characterized by the Renyi entropies that relate to
the information bits in a non-unform vulnerable-host distribution
extracted by a randomized scanning algorithm. Meanwhile, we
show that a representative network-aware malware can increase
the spreading speed by exactly or nearly a non-uniformity factor
when compared to a random-scanning malware at an early
stage of malware propagation. This quantifies that how much
more rapidly the Internet can be infected at the early stage
when a malware exploits an uneven vulnerable-host distribution
as a network-wide vulnerability. Furthermore, we analyze the
effectiveness of defense strategies on the spread of network-aware
malwares. Our results demonstrate that counteracting network-
aware malwares is a significant challenge for the strategies that
include host-based defenses and IPv6.
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I. INTRODUCTION

Malware attacks are a significant threat to networks. Mal-
wares are malicious softwares that include worms, viruses,
bots, and spywares. A fundamental characteristic of malwares
is self-propagation, i.e., a malware can infect vulnerable hosts
and use infected hosts to self-disseminate. A key component of
malware propagation is malware-scanning methods, i.e., how
effectively the malware finds vulnerable targets. Most of the
real, especially old worms, such as Code Red [19], Slammer
[18], and latter Witty [25], use naive random scanning [6].
Random scanning chooses target IP addresses uniformly and
does not take any information on network structures into con-
sideration. Advanced scanning methods, however, have been
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developed that exploit the IP address structure. For example,
Code Red II [34] and Nimda [33] worms have used localized
scanning [5]. Localized scanning preferentially searches for
vulnerable hosts in the local sub-network. The Blaster worm
[36] has used sequential scanning in addition to localized scan-
ning [31]. Sequential scanning searches for vulnerable hosts
through their closeness in the IP address space. Moreover, the
AgoBot has employed a blacklist of the well-known monitored
IP address space and avoided scanning these addresses to be
stealthy [39]. The Samy worm has developed to make use
of “friendship” in social networks to propagate across the
MySpace site [40]. A common characteristic of these malwares
is that they scan for vulnerable hosts by exploiting a certain
structure in the IP address space. Such a structure, as we shall
soon show, exhibits network vulnerabilities to defenders and
advantages to attackers.

In this paper, we study the perspective of attackers who
attempt to collect the information on network vulnerabilities
and design intelligent malwares. By studying this perspective,
we hope to help defenders better understand malware spread-
ing, e.g., the worst as well as practical malwares that utilize
a certain class of randomized scanning algorithms, and better
defend against malware attacks.

For attackers, an open question is how certain information
can help them design fast-spreading malwares. The infor-
mation can be from coarse to fine, including the number
of vulnerable hosts, a distribution of vulnerable hosts, the
locations of detection systems, and individual vulnerable hosts.
This work focuses on aggregated information, i.e., vulnerable-
host distributions. The vulnerable-host distributions have been
observed to be bursty and spatially inhomogeneous by Barford
et al. [1]. A non-uniform distribution of Witty-worm victims
has been reported by Rajab et al. [21]. A Web-server distribu-
tion has been found to be non-uniform in the IP address space
in our prior work [8]. These discoveries suggest that vulnerable
hosts and Web servers may be “clustered” (i.e., non-uniform).
The clustering/non-uniformity makes the network vulnerable
since if one host is compromised in a cluster, the rest may
be compromised rather quickly. Therefore, the information on
vulnerable-host distributions can be critical for attackers to
develop intelligent malwares.

We refer the malwares that exploit the information on the
highly uneven distributions of vulnerable hosts as network-
aware malwares. Such malwares include aforementioned
localized-scanning and sequential-scanning malwares. In our
prior work, we have studied importance-scanning malwares
[8], [10], [15]. Specifically, importance scanning provides a
worst-case (“what-if”) scenario: When there are many ways for
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network-aware malwares to exploit the information on vulner-
able hosts, importance scanning is a worst-case threat-model
and can serve as a benchmark for studying real malwares.
Indeed, what has been observed is that real network-aware
and importance-scanning malwares spread much faster than
random-scanning malwares [21], [8]. However, it is not well
understood how to characterize the relationship between the
information on vulnerable-host distributions possessed by at-
tackers and the propagation speed of network-aware malwares.

Questions arise. Does there exist a generic characteris-
tic across different vulnerable-host distributions? If so, how
do network-aware malwares exploit such a vulnerability?
How can we defend against such malwares? Our goal is to
investigate such a generic characteristic in vulnerable-host
distributions, to quantify its relationship with network-aware
malwares, and to understand the effectiveness of defense
strategies. To achieve this goal, we investigate network-aware
malware attacks in view of information theory, focusing on
both the worst-case and real network-aware malwares.

A fundamental concept of information theory is the entropy
that measures the uncertainty of outcomes of a random event.
The reduction of uncertainty is measured by the amount of
acquired information. We apply the Renyi entropy, a gen-
eralized entropy [23], to analyze the uncertainty of finding
vulnerable hosts for different malware-scanning methods. As
we shall soon show, the Renyi entropy is unique in relating
three factors: malware-scanning methods, the information bits
extracted by malwares from the vulnerable-host distribution,
and malware spreading speed.

As the first step, we observe, from five large-scale mea-
surement sets, the common characteristics of non-uniform
vulnerable-host distributions. We then derive a new metric as
the non-uniformity factor to characterize the non-uniformity
of a vulnerable-host distribution. A larger non-uniformity
factor reflects a more non-uniform distribution of vulnerable
hosts. We obtain the non-uniformity factors from the data
sets on vulnerable-host distributions and show that all data
sets have large non-uniformity factors. Moreover, the non-
uniformity factor is a function of the Renyi entropies of order
two and zero [23]. We show that the non-uniformity factor
better characterizes the unevenness of a distribution than the
Shannon entropy. Therefore, in view of information theory, the
non-uniformity factor provides a quantitative measure of the
unevenness/uncertainty of a vulnerable-host distribution.

Next, we relate the generalized entropy with network-aware
scanning methods. The class of network-aware malwares that
we study all utilizes randomized epidemic algorithms. Hence
the importance of applying the generalized entropy is that the
Renyi entropy characterizes the bits of information extractable
by the randomized epidemic algorithms. We develop explicit
relations among the Renyi entropy, the randomized epidemic
scanning methods, and the spreading speed of network-aware
malwares at an early stage of propagation. A malware that
spreads faster at the early stage can in general infect most of
the vulnerable hosts in a shorter time. The propagation ability
of a malware at the early stage is characterized by the infection
rate [32]. We derive the infection rates of a class of network-
aware malwares. We find that the infection rates of random-

scanning and network-aware malwares are determined by the
uncertainty of the vulnerable-host distribution or the Renyi
entropies of different orders. Specifically, a random-scanning
malware has the largest uncertainty (i.e., Renyi entropy of
order zero), and an optimal importance-scanning malware
has the smallest uncertainty (i.e., Renyi entropy with order
infinity). Moreover, the infection rates of some real network-
aware malwares depend on the non-uniformity factors or the
Renyi entropy of order two. For example, compared with
random scanning, localized scanning can increase the infection
rate by nearly a non-uniformity factor. Therefore, the infection
rates of malware-scanning algorithms are characterized by
the Renyi entropies, relating the efficiency of a randomized
scanning algorithm with the uncertainty on a non-uniform
vulnerable-host distribution. These analytical results on the re-
lationships between vulnerable-host distributions and network-
aware malware spreading ability are validated by simulation.

Finally, we study new challenges to malware defenses posed
by network-aware malwares. Using the non-uniformity factor,
we show quantitatively that the host-based defense strategies,
such as proactive protection [3] and virus throttling [27],
should be deployed at almost all hosts to slow down network-
aware malwares at the early stage. A partial deployment may
invalidate such host-based defenses. Moreover, we demon-
strate that the infection rate of a network-aware malware in
the IPv6 Internet can be comparable to that of the Code Red
v2 worm in the IPv4 Internet. This shows that having a much
larger IP-address space would not alleviate malware spreading.

The remainder of this paper is structured as follows. Section
II provides the background on information theory. Section
III presents our collected data sets. Section IV introduces a
new metric called the non-uniformity factor and compares this
metric to the Shannon entropy. Sections V and VI characterize
the spreading ability of network-aware malwares through
theoretical analyses and simulations. Section VII further stud-
ies the effectiveness of defense strategies on network-aware
malwares. Section VIII concludes this paper.

II. RENYI ENTROPY

An entropy is a measure of the average information uncer-
tainty of a random variable [13]. A general entropy, called the
Renyi entropy [23], [4], is defined as

Hq(X) =
1

1− q
log2

∑

x∈X
(PX(x))q

, for q 6= 1, (1)

where the random variable X is with probability distribution
PX and alphabet X . The well-known Shannon entropy is a
special case of the Renyi entropy, i.e.,

H(X) = lim
q→1

Hq(X). (2)

It is noted that
H0(X) = log2 |X |, (3)

where |X | is the alphabet size; and

H∞(X) = − log2 max
x∈X

PX(x), (4)
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where H∞(X) is a result from limq→∞Hq(X) and is called
the min-entropy of X . In this paper, moreover, we are also
interested in the Renyi entropy of order two, i.e.,

H2(X) = − log2

∑

x∈X
(PX(x))2. (5)

Comparing H0(X), H(X), H2(X), and H∞(X), we have the
following theorem that has been proved in [22], [4].

Theorem 1:

H0(X) ≥ H(X) ≥ H2(X) ≥ H∞(X) (6)

with equality iff X is uniformly distributed over X .

III. MEASUREMENTS AND VULNERABLE-HOST
DISTRIBUTIONS

We begin our study by considering how significant the un-
evenness of vulnerable-host distributions is. We use five large
data sets to obtain empirical vulnerable-host distributions.

A. Measurements

DShield (D1): DShield provides the information of vul-
nerable hosts by aggregating logs from more than 1,600
intrusion detection systems (IDSes) distributed throughout the
Internet [35]. We further focus on the following ports that
were attacked by worms: 80 (HTTP), 135 (DCE/RPC), 445
(NetBIOS/SMB), 1023 (FTP servers and the remote shell
attacked by W32.Sasser.E.Worm), and 6129 (DameWare).

iSinks (P1 and C1): Two unused address space monitors
run the iSink system [29]. The monitors record the unwanted
traffic arriving at the unused address spaces that include a
Class A network (referred to as “Provider” or P1) and two
Class B networks at the campus of the University of Wisconsin
(referred to as “Campus” or C1) [1].

Witty-worm victims (W1): A list of Witty-worm victims is
provided by CAIDA [25]. CAIDA used a network telescope
with approximate 224 IP addresses to log the traffic of Witty-
worm victims that are Internet security systems (ISS) products.

Web-server list (W2): The IP addresses of Web servers were
collected through UROULETTE [38]. UROULETTE provides
a random uniform resource locator (URL) generator to obtain
a list of IP addresses of Web servers.

The first three data sets (D1, P1, and C1) were collected
over a seven-day period from 12/10/2004 to 12/16/2004 and
have been studied in [1] to demonstrate the bursty and spatially
inhomogeneous distribution of malicious source IP addresses.
The last two data sets (W1 and W2) have been used in our
prior work [8] to show the virulence of importance-scanning
malwares. The summary of our data sets is given in Table I.

TABLE I
SUMMARY OF THE DATA SETS.

Trace Description Number of unique source addresses
D1 DShield 7,694,291
P1 Provider 2,355,150
C1 Campus 448,894

W1 Witty-worm victims 55,909
W2 Web servers 13,866
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Fig. 1. CCDF of collected data sets.

B. Vulnerable-Host Distributions

To obtain vulnerable-host group distributions, we use the
classless inter-domain routing (CIDR) notation [17]. The In-
ternet is partitioned into subnets according to the first l bits
of IP addresses, i.e., /l prefixes or /l subnets. In this division,
there are 2l subnets, and each subnet contains 232−l addresses,
where l ∈ {0, 1, · · · , 32}. For example, when l = 8, the
Internet is grouped into Class A subnets (i.e., /8 subnets); when
l = 16, the Internet is partitioned into Class B subnets (i.e.,
/16 subnets).

We plot the complementary cumulative distribution func-
tions (CCDF) of our collected data sets in /8 and /16 subnets
in Figure 1 in log-log scales. CCDF is defined as the fraction
of the subnets with the number of hosts greater than a given
value. Figure 1(a) shows population distributions in /8 subnets
for D1, P1, C1, W1, and W2, whereas Figure 1(b) exhibits
host distributions in /16 subnets for D1 with different ports
(80, 135, 445, 1023, and 6129). Figure 1 demonstrates a
wide range of populations, indicating highly inhomogeneous
address structures. Specifically, the relatively straight lines,
such as W2 and D1-135, imply that vulnerable hosts follow
a power law distribution. Similar observations were given in
[19], [18], [20], [21], [1], [8], [9], [11], [28].
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IV. NON-UNIFORMITY FACTOR

In this section, we derive a simple metric, called the non-
uniformity factor, to quantify the vulnerability, i.e., the non-
uniformity of a vulnerable-host distribution. We show that the
non-uniformity factor is a function of Renyi entropies. We
then compare the non-uniformity factor with the well-known
Shannon entropy.

A. Definition and Property
We consider aggregated vulnerable-host distributions. Let

l (0 ≤ l ≤ 32) be an aggregation level of IP addresses as
defined in Section III-B. For a given l, let N

(l)
i be the number

of vulnerable hosts in /l subnet i, where 1 ≤ i ≤ 2l. Let N be
the total number of vulnerable hosts, where N =

∑2l

i=1 N
(l)
i .

Let p
(l)
g (i) (i = 1, 2, · · · , 2l) be the probability that a randomly

chosen vulnerable host is in the i-th /l subnet. Then p
(l)
g (i) =

N
(l)
i

N ; and
∑2l

i=1 p
(l)
g (i) = 1. Thus, p

(l)
g (i)’s denote the group

distribution of vulnerable hosts in /l subnets.
Definition: The non-uniformity factor in /l subnets is de-

fined as

β(l) = 2l
2l∑

i=1

(
p(l)

g (i)
)2

. (7)

Note that such a definition is not arbitrary. In the next section,
β(l) is used to unify the analytical results on the infection
speeds of different malware-scanning strategies.

One property of β(l) is that

β(l) ≥



2l∑

i=1

p(l)
g (i)




2

= 1. (8)

The above inequality is derived by the Cauchy-Schwarz in-
equality. The equality holds if and only if p

(l)
g (i) = 2−l, for

i = 1, 2, · · · , 2l. In other words, when the vulnerable-host
distribution is uniform, β(l) achieves the minimum value 1.
On the other hand, since p

(l)
g (i) ≥ 0,

β(l) ≤ 2l ·



2l∑

i=1

p(l)
g (i)




2

= 2l. (9)

The equality holds when p
(l)
g (j) = 1 for some j and

p
(l)
g (i) = 0, i 6= j, i.e., all vulnerable hosts concentrate on one

subnet. This means that when the vulnerable-host distribution
is extremely non-uniform, β(l) obtains the maximum value 2l.
Moreover, assuming that vulnerable hosts are uniformly dis-
tributed in the first n (1 ≤ n ≤ 2l) /l subnets, i.e., p

(l)
g (i) = 1

n ,
i = 1, 2, · · · , n; and p

(l)
g (i) = 0, i = n + 1, · · · , 2l, we have

β(l) = 2l

n . Therefore, β(l) characterizes the non-uniformity of
a vulnerable-host distribution. A larger non-uniformity factor
reflects a more non-uniform distribution of vulnerable hosts.

The non-uniformity factor is indeed related to a distance
between a vulnerable-host distribution and a uniform distri-
bution. Consider L2 distance between p

(l)
g (i) and the uniform

distribution p
(l)
u (i) = 1

2l for i = 1, 2, · · · , 2l, where

||p(l)
g − p(l)

u ||2
2

=
2l∑

i=1

(
p(l)

g (i)− 1
2l

)2

, (10)

which leads to

β(l) = 2l · ||p(l)
g − p(l)

u ||2
2

+ 1. (11)

For a given l, 2l is a constant and is the size of the sample
space of /l subnets. Hence, β(l) essentially measures the devi-
ation of a vulnerable-host group distribution from a uniform
distribution for /l subnets.

How does β(l) vary with l? When l = 0, β(0) = 1. In the
other extreme where l = 32,

p(32)
g (i) =

{
1
N , address i is vulnerable to the malware;
0, otherwise,

(12)
which results in β(32) = 232

N . More importantly, the ratio of
β(l) to β(l−1) lies between 1 and 2, as shown below.

Theorem 2:

β(l−1) ≤ β(l) ≤ 2β(l−1), (13)

where l ∈ {1, · · · , 32}.
The proof of Theorem 2 can be found in [7]. An intuitive

explanation of this theorem is as follows. For /l and /(l − 1)
subnets, group i (i = 1, 2, · · · , 2l−1) of /(l − 1) subnets
is partitioned into groups 2i − 1 and 2i of /l subnets. If
vulnerable hosts in each group of /(l− 1) subnets are equally
divided into the groups of /l subnets (i.e., p

(l)
g (2i − 1) =

p
(l)
g (2i) = 1

2p
(l−1)
g (i), ∀i), then β(l) = β(l−1). If the division

of vulnerable hosts is extremely uneven for all groups (i.e.,
p
(l)
g (2i − 1) = 0 or p

(l)
g (2i) = 0, ∀i), then β(l) = 2β(l−1).

Excluding these two extreme cases, β(l−1) < β(l) < 2β(l−1).
Therefore, β(l) is a non-decreasing function of l. Moreover,
the ratio of β(l) to β(l−1) reflects how unevenly vulnerable
hosts in each /(l − 1) subnet distribute between two groups
of /l subnets. This ratio is indicated by the slope of β(l) in a
β(l) ∼ l figure.

B. Estimated Non-Uniformity Factor

Figure 2 shows the non-uniformity factors estimated from
our data sets. The non-uniformity factors increase with the
prefix length for all data sets. Note that the y-axis is in a log
scale. Thus, β(l) increases almost exponentially with a wide
range of l. To gain intuition on how large β(l) can be, β(8)

and β(16) are summarized for all data sets in Table II. It can
be observed that β(8) and β(16) have large values, indicating
the significant unevenness of collected distributions.

TABLE II
β(8) AND β(16) OF COLLECTED DISTRIBUTIONS.

β(l) D1 P1 C1 W1 W2
β(8) 7.9 8.4 9.0 12.0 7.8

β(16) 31.2 43.2 52.2 126.7 50.2

β(l) D1-80 D1-135 D1-445 D1-1023 D1-6129
β(8) 7.9 15.4 10.5 48.2 9.1

β(16) 153.3 186.6 71.7 416.3 128.9
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Fig. 2. Non-uniformity factors of collected data sets. Note that the y-axis
uses a log scale.

C. Shannon Entropy

To further understand the importance of the non-uniformity
factor, we now turn our attention on the Shannon entropy
for comparison. It is well-known that the Shannon entropy
can be used to measure the non-uniformity of a probability
distribution [13]. The Shannon entropy in /l subnets is defined
as

H
(
P (l)

)
= −

2l∑

i=1

p(l)
g (i) log2 p(l)

g (i), (14)

where P (l) = {p(l)
g (1), p(l)

g (2), · · · , p
(l)
g (2l)}.

It is noted that

0 ≤ H
(
P (l)

)
≤ l. (15)

If a distribution is uniform, H
(
P (l)

)
achieves the maximum

value l. On the other hand, if a distribution is extremely non-
uniform, e.g., all vulnerable hosts concentrate on one subnet,
H

(
P (l)

)
obtains the minimum value 0.

Furthermore, we compare H
(
P (l)

)
with H

(
P (l−1)

)
and

find that their difference is between 0 and 1, as shown in the
following theorem.

Theorem 3:

H
(
P (l−1)

)
≤ H

(
P (l)

)
≤ H

(
P (l−1)

)
+ 1, (16)

where l ∈ {1, · · · , 32}.
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Fig. 3. Shannon entropies of collected data sets.

The proof of Theorem 3 can be found in [7]. Figure 3 shows
the Shannon entropies of our empirical distributions from the
data sets. H

(
P (l)

)
= l is denoted by the diagonal line in the

figure. It can be seen that the curves for our collected data
sets are similar.

D. Non-Uniformity Factor, Renyi Entropy, and Shannon En-
tropy

To quantify the difference between the non-uniformity fac-
tor and the Shannon entropy, we note that the non-uniformity
factor directly relates to the Renyi entropies of order two and
zero, as shown in the following equation:

β(l) = 2l−H2(P (l)) = 2H0(P (l))−H2(P (l)), (17)

where P (l) = {p(l)
g (1), p(l)

g (2), · · · , p
(l)
g (2l)}. Therefore, the

non-uniformity factor is essentially a Renyi entropy. Hence,
the non-uniformity factor corresponds to a generalized entropy
of order 2, whereas the Shannon entropy is the generalized
entropy of order 1.

Why do we choose the non-uniformity factor rather than
the Shannon entropy? We compare these two metrics in terms
of characterizing a vulnerable-host distribution and find the
following fundamental differences. First, in Figure 2, when
a distribution is uniform, β(l) = 1. Hence, the distance
between β(l) and the horizontal access 1 measures the degree
of unevenness. Similarly, the distance between H

(
P (l)

)
and

0 in Figure 3 reflects how uniform a distribution is. A larger
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H
(
P (l)

)
corresponds to a more even distribution, whereas a

larger β(l) corresponds to a more non-uniform distribution. In
addition, if two distributions have different prefix lengths, we
can directly apply the non-uniformity factor (or the Shannon
entropy) to compare the unevenness (or evenness) between
them. Therefore, the Shanon entropy provides a better measure
for describing the evenness of a distribution, while the non-
uniformity factor gives a better metric for characterizing the
non-uniformity of a distribution. Second, from Theorem 1
and Equation (17), we have β(l) > 2l−H(P (l)) when the
non-zero p

(l)
g ’s are not all equal. Meanwhile, evidenced by

Figures 2 and 3, the non-uniformity factor magnifies the
unevenness of a distribution. Therefore, β(l) depends more on
the large p

(l)
g ’s. Finally, a more important aspect of using the

non-uniformity factor is its relation to some real randomized
epidemic algorithms (e.g., localized scanning and sequential
scanning). Such a relationship cannot be drawn using the
Shannon entropy but can be related to Renyi entropies and
thus information bits.

V. INFORMATION BITS AND NETWORK-AWARE MALWARE
SPREADING

In this section, we explicitly relate the speed of malware
propagation with the information bits extracted by random-
scanning and network-aware malwares.

A. Collision Probability, Uncertainty, and Information Bits

Now consider a malware or an adversary that searches
for vulnerable hosts. An adversary often does not have the
complete knowledge on the locations of vulnerable hosts.
Hence, malwares make a random guess on which /l subnets
are likely to have most vulnerable hosts. This results in a
class of randomized epidemic algorithms for malwares to scan
subnets. Let q

(l)
g (i) (i = 1, 2, · · · , 2l) be the probability that a

malware scans the i-th /l subnet. Thus, q
(l)
g (i)’s characterize

the virulence of randomized epidemic scanning algorithms.
We then define three important quantities: the collision

probability, uncertainty, and information bits. Consider a ran-
domly chosen vulnerable host Y . The probability that this
host is in the /l subnet i is p

(l)
g (i). Imagine that a malware

guesses which subnet host Y belongs to and chooses a target
/l subnet i with the probability q

(l)
g (i) = p

(l)
g (i). Thus,

the probability for the malware to make a correct guess

is ph =
∑2l

i=1

(
p
(l)
g (i)

)2

. This probability is called the
collision probability and is defined in [4]. Such a probability
of success is reflected in our designed non-uniformity factor
and corresponds to a scenario that the malware knows the
underlying vulnerable-host group distribution. Intuitively, the
more non-uniform a vulnerable-host distribution is, the larger
the probability of success is, i.e., the easier it is for a scan to
hit a vulnerable host, the more vulnerable the network is, and
the less uncertainty there is in a vulnerable-host distribution.

We now extend the concept of the collision probability and
define ph as the probability that a malware scan hits a subnet

where a randomly chosen vulnerable host locates, i.e.,

ph =
2l∑

i=1

p(l)
g (i)q(l)

g (i). (18)

Then two important quantities can be defined:
• − log2 ph as the uncertainty exhibited by the vulnerable-

host distribution p
(l)
g (i)’s.

• H0

(
P (l)

)−[− log2 ph] as the number of information bits
extracted by a randomized epidemic scanning algorithm
using q

(l)
g (i)’s.

Here − log2 ph is regarded as the uncertainty on the
vulnerable-host distribution in view of the malware, similar
to self-information [41]. For example, if a malware has no
information about a vulnerable-host distribution and has to use
random scanning, it has the largest uncertainty H0

(
P (l)

)
= l

and extracts zero information bit from the distribution. Like-
wise, the number of information bits extracted by a network-
aware malware can be measured as the reduction of the
uncertainty and thus equals to H0

(
P (l)

) − [− log2 ph]. For
example, log2 β(l) = H0

(
P (l)

)−H2

(
P (l)

)
is the information

bits extractable by an adversary that chooses q
(l)
g (i) = p

(l)
g (i).

B. Infection Rate
We characterize the spread of a network-aware malware at

an early stage by deriving the infection rate. The infection rate,
denoted by α, is defined as the average number of vulnerable
hosts that can be infected per unit time by one infected
host during the early stage of malware propagation [32]. The
infection rate is an important metric for studying network-
aware malware spreading ability for two reasons. First, since
the number of infected hosts increases exponentially with the
rate 1 + α during the early stage, a malware with a higher
infection rate can spread much faster at the beginning and thus
infect a large number of hosts in a shorter time [8]. Second,
while it is generally difficult to derive a close-form solution
for dynamic malware propagation, we can obtain a close-form
expression of the infection rate for different malware scanning
methods.

Let R denote the (random) number of vulnerable hosts that
can be infected per unit time by one infected host during the
early stage of malware propagation. The infection rate is the
expected value of R, i.e., α = E[R]. Let s be the scanning rate
or the number of scans sent by an infected host per unit time,
N be the number of vulnerable hosts, and Ω be the scanning
space (i.e., Ω = 232).

C. Random Scanning
Random scanning (RS) has been used by most real worms

and is the simplest randomized epidemic algorithm. For RS,
an infected host sends out s random scans per unit time, and
the probability that one scan hits a vulnerable host is N

Ω . Thus,
R follows a Binomial distribution B(s, N

Ω )1, resulting in

αRS = E[R] =
sN

Ω
. (19)

1In our derivation, we ignore the dependency of the events that different
scans hit the same target at the early stage of malware propagation.
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Another way to derive the infection rate of RS is as
follows. Consider a randomly chosen vulnerable host Y . The
probability that this host is in the /l subnet i is p

(l)
g (i). An RS

malware can make a successful guess on which subnet host Y

belongs to with collision probability ph = 1
2l = 2−H0(P (l)).

A scan from the RS malware can be regarded as first selecting
the /l subnet randomly and then choosing the host in the subnet
at random. Hence the probability for the malware to hit host
Y is 1

232−l · 2−H0(P (l)) = 2−H0(P (l))−(32−l). Since there are
N vulnerable hosts, the probability for a malware to hit a
vulnerable host is N · 2−H0(P (l))−(32−l). Thus, R follows a
Binomial distribution B(s, N ·2−H0(P (l))−(32−l)), resulting in

αRS = E[R] =
sN

232−l
· 2−H0(P (l)). (20)

Therefore, for the RS malware, the uncertainty on the
vulnerable-host distribution is − log2 ph = H0

(
P (l)

)
, i.e., the

number of information bits on vulnerable hosts extracted by
RS is H0

(
P (l)

)−H0

(
P (l)

)
= 0.

D. Optimal Importance Scanning

Importance scanning (IS) exploits the non-uniform distri-
bution of vulnerable hosts. In our prior work, we show that
IS corresponds to the worst-case malware attacks given a
vulnerable-host distribution [8]. In this work, we derive the
infection rate of IS and relate that to information bits. An
infected host scans /l subnet i with the probability q

(l)
g (i).

Consider a randomly chosen vulnerable host Y . The prob-
ability for this host being in /l subnet i is p

(l)
g (i). An IS

malware can make a successful guess on which subnet host Y

belongs to with collision probability ph =
∑2l

i=1 p
(l)
g (i)q(l)

g (i).
Thus, the probability for the malware to hit the host Y

is 1
232−l

∑2l

i=1 p
(l)
g (i)q(l)

g (i). Similar to RS, R of IS follows

a Binomial distribution B(s, N
232−l

∑2l

i=1 p
(l)
g (i)q(l)

g (i)), which
leads to2

αIS = E[R] =
sN

232−l

2l∑

i=1

p(l)
g (i)q(l)

g (i). (21)

Therefore, the uncertainty of the vulnerable-host distribution
for an IS malware is − log2

∑2l

i=1 p
(l)
g (i)q(l)

g (i), and the num-
ber of information bits on vulnerable hosts extracted by IS is
H0

(
P (l)

)
+ log2

∑2l

i=1 p
(l)
g (i)q(l)

g (i).
Note that importance scanning can choose q

(l)
g (i)’s to max-

imize the infection rate, resulting in a “worst-case” scenario
for defenders or /l optimal IS (/l OPT IS) for attackers [8],
i.e.,

α
(l)
OPT IS = max{αIS} =

sN

232−l
max

i
{p(l)

g (i)}. (22)

That is,

α
(l)
OPT IS =

sN

232−l
2−H∞(P (l)) = αRS · 2H0(P (l))−H∞(P (l)).

(23)
Therefore, the uncertainty on the vulnerable-host distribution
for /l OPT IS is H∞

(
P (l)

)
; and the number of information

2The same result was derived in [8] but by a different approach.

bits on vulnerable hosts extracted by this scanning method is
H0

(
P (l)

)−H∞
(
P (l)

)
.

E. Suboptimal Importance Scanning

As shown in our prior work [8], the optimal IS is difficult
to implement in reality. Hence we consider a special case of
IS, where the group scanning distribution q

(l)
g (i) is chosen to

be proportional to the number of vulnerable hosts in group i,
i.e., q

(l)
g (i) = p

(l)
g (i). This results in suboptimal IS [8], called

/l IS. Thus, the infection rate derived in this work is

α
(l)
IS =

sN

232−l

2l∑

i=1

(pg(i))
2 =

sN

232−l
·2−H2(P (l)) = αRS · β(l).

(24)
Therefore, the uncertainty on the vulnerable-host distribution
for /l IS is H2

(
P (l)

)
; and the corresponding number of infor-

mation bits extracted is H0

(
P (l)

) − H2

(
P (l)

)
or log2 β(l).

Moreover, compared with RS, this /l IS can increase the
infection rate by a factor of β(l). On the other hand, RS can
be regarded as a special case of suboptimal IS when l = 0.

F. Localized Scanning

Localized scanning (LS) has been used by such real worms
as Code Red II and Nimda. LS is a simpler randomized
algorithm that utilizes only a few parameters rather than
an underlying vulnerable-host group distribution. We first
consider a simplified version of LS, called /l LS, which scans
the Internet as follows:
• pa (0 ≤ pa ≤ 1) of the time, an address with the same

first l bits is chosen as the target,
• 1− pa of the time, an address is chosen randomly from

an entire IP address space.
Hence, LS is an oblivious yet local randomized algorithm
where the locality is characterized by parameter pa. Assume
that an initially infected host is randomly chosen from the
vulnerable hosts. Let Ig denote the subnet where an initially
infected host locates. Thus, P (Ig = i) = p

(l)
g (i), where

i = 1, 2, · · · , 2l. For an infected host located in /l subnet i,
a scan from this host probes globally with the probability of
1−pa and hits /l subnet j (j 6= i) with the likelihood of 1−pa

2l .
Thus, the group scanning distribution for this host is

q(l)
g (j) =

{
pa + 1−pa

2l , if j = i;
1−pa

2l , otherwise,
(25)

where j = 1, 2, · · · , 2l. Given the subnet location of an ini-
tially infected host (i.e., /l subnet i), the conditional collision
probability or the probability for a malware scan to hit a
subnet where a randomly chosen vulnerable host locates can
be calculated based on Equation (18), i.e.,

ph(i) = pap(l)
g (i) +

1− pa

2l
. (26)

Therefore, we can compute the collision probability as

ph =
2l∑

i=1

P (Ig = i)ph(i) = pa

2l∑

i=1

p2
g(i) +

1− pa

2l
, (27)



8

resulting in

α
(l)
LS = αRS

(
1− pa + paβ(l)

)
. (28)

Therefore, the number of information bits extracted from the
vulnerable-host distribution by /l LS is log2{1−pa +paβ(l)},
which is between 0 and H0

(
P (l)

)−H2

(
P (l)

)
.

Moreover, since β(l) > 1 (β(l) = 1 is for a uniform
distribution and is excluded here), α

(l)
LS increases with respect

to pa. Specifically, when pa → 1, α
(l)
LS → αRSβ(l) = α

(l)
IS .

Thus, /l LS has an infection rate comparable to that of /l IS.
In reality, pa cannot be 1. This is because an LS malware
begins spreading from one infected host that is specifically in
a subnet; and if pa = 1, the malware can never spread out of
this subnet. Therefore, we expect that the optimal value of pa

should be large but not 1.
Next, we further consider another LS, called two-level LS

(2LLS), which has been used by the Code Red II and Nimda
worms [34], [33]. 2LLS scans the Internet as follows:
• pb (0 ≤ pb ≤ 1) of the time, an address with the same

first byte is chosen as the target,
• pc (0 ≤ pc ≤ 1 − pb) of the time, an address with the

same first two bytes is chosen as the target,
• 1− pb − pc of the time, a random address is chosen.

For example, for the Code Red II worm, pb = 0.5 and pc =
0.375 [34]; for the Nimda worm, pb = 0.25 and pc = 0.5
[33]. Using the similar analysis for /l LS, we can derive the
infection rate of 2LLS:

α2LLS = αRS

(
1− pb − pc + pbβ

(8) + pcβ
(16)

)
. (29)

Similarly, the number of information bits extracted from
the vulnerable-host distribution by the 2LLS malware is
log2{1 − pb − pc + pbβ

(8) + pcβ
(16)}, which is between 0

and H0

(
P (16)

)−H2

(
P (16)

)
.

Since β(16) ≥ β(8) ≥ 1 from Theorem 2, α2LLS holds
or increases when both pb and pc increase. Specially, when
pc → 1, α2LLS → αRSβ(16) = α

(16)
IS . Thus, 2LLS has an

infection rate comparable to that of /16 IS. Moreover, β(16) is
much larger than β(8) as shown in Table II for the collected
distributions. Hence, pc is more significant than pb for 2LLS.

G. Modified Sequential Scanning
The Blaster worm is a real malware that exploits se-

quential scanning in combination with localized scanning. A
sequential-scanning malware studied in [31], [16] begins to
scan addresses sequentially from a randomly chosen starting
IP address and has a similar propagation speed as a random-
scanning malware. The Blaster worm selects its starting point
locally as the first address of its Class C subnet with probabil-
ity 0.4 [36], [31]. To analyze the effect of sequential scanning,
we do not incorporate localized scanning. Specifically, we
consider our /l modified sequential-scanning (MSS) malware,
which scans the Internet as follows:
• Newly infected host A begins with random scanning until

finding a vulnerable host with address B.
• After infecting the target B, host A continues to sequen-

tially scan IP addresses B + 1, B + 2, · · · (or B − 1,
B − 2, · · · ) in the /l subnet where B locates.

Such a sequential malware-scanning strategy is in a similar
spirit to the nearest neighbor rule, which is widely used
in pattern classification [12]. The basic idea is that if the
vulnerable hosts are clustered, the neighbor of a vulnerable
host is likely to be vulnerable also.

Such a /l MSS malware has two stages. In the first stage
(called MSS 1), the malware uses random scanning and has
an infection rate of αRS , i.e., αMSS 1 = αRS . In the second
stage (called MSS 2), the malware scans sequentially in a /l
subnet. The fist l bits of a target address are fixed, whereas
the last 32− l bits of the address are generated additively or
subtractively and are modulated by 232−l. Let Ig denote the
sunbet where B locates. Thus, P (Ig = i) = p

(l)
g (i), where

i = 1, 2, · · · , 2l. Since an MSS 2 malware scans only the
subnet where B locates, the conditional collision probability

ph(i) = p
(l)
g (i), which leads to ph =

∑2l

i=1

(
p
(l)
g (i)

)2

. Thus,
the infection rate is

αMSS 2 = αRS · β(l). (30)

Therefore, the uncertainty on vulnerable hosts for /l MSS is
between H0

(
P (l)

)
and H2

(
P (l)

)
. Moreover, the infection rate

of /l MSS is between αRS and αRSβ(l).

H. Summary

The information bits extractable by the network-aware mal-
wares relates the entropy on a vulnerable-host distribution and
the malware propagation speed, as shown in the following
equation:

Information bits = H0

(
P (l)

)
− [− log2 ph] = log2

{
α

αRS

}
,

(31)
where ph is the collision probability and α is the infection rate
of the malware.

When /l subnets are considered, RS has the largest uncer-
tainty H0

(
P (l)

)
, while optimal IS has the smallest uncertainty

H∞
(
P (l)

)
. Moreover, infection rates of all three network-

aware malwares (suboptimal IS, LS, and MSS) can be far
larger than that of an RS malware, depending on the non-
uniformity factors (i.e., β(l)) or the Renyi entropy in the
order of two (i.e., H2

(
P (l)

)
). The infection rates of all these

scanning algorithms are characterized by the Renyi entropies,
relating the efficiency of a randomized scanning algorithm
with the information bits in a vulnerable-host distribution.

Hence, we relate the information theory with the network-
aware malware propagation through the Renyi entropy. The
uncertainty of a vulnerable-host group probability distribution,
which is quantified by the Renyi entropy, is important for an
attacker to design a network-aware malware. If there is no
uncertainty about the distribution of vulnerable hosts (e.g.,
either all vulnerable hosts are concentrated on a subnet or
all information about vulnerable hosts is known), the entropy
is minimum, and the malware that uses the information on
the distribution can spread fastest by employing the optimal
importance scanning. On the other hand, if there is maximum
uncertainty (e.g., vulnerable hosts are uniformly distributed),
the entropy is maximum. For this case, the best a malware
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TABLE III
UNCERTAINTY ON THE VULNERABLE-HOST DISTRIBUTION, INFORMATION BITS, AND INFECTION RATES OF DIFFERENT SCANNING METHODS.

Scanning method RS /16 OPT IS /16 IS /16 LS 2LLS /16 MSS 2
Uncertainty (analytical result) 16 7.9266 10.2940 10.6999 11.1620 10.2940

Information bits (analytical result) 0 8.0734 5.7060 5.3001 4.8380 5.7060
Infection rate (analytical result) 0.0105 2.8152 0.5456 0.4118 0.2989 0.5456

Infection rate (sample mean) 0.0103 2.7745 0.5454 0.4023 0.2942 0.5489
Infection rate (sample variance) 0.0010 0.2597 0.0543 0.2072 0.1053 0.3186

can take an advantage from a uniform distribution is to use
random scanning. In general, when an attacker obtains more
information about a non-uniform vulnerable-host distribution
(e.g., larger l), the resulting malware can spread faster.

VI. SIMULATION AND VALIDATION

We now validate our analytical results through simulations
using the collected data sets.

A. Infection Rate

We first focus on validating infection rates. We apply the
discrete event simulation to our experiments [24]. Specifically,
we simulate the searching process of a malware using different
scanning methods at the early stage. We use the C1 data set for
the vulnerable-host distribution. Note that the C1 distribution
has the non-uniformity factors β(8) = 9.0 and β(16) = 52.2,
and maxi{p(l)

g (i)} = 0.0041. The malware spreads over the
C1 distribution with N = 448, 894 and has a scanning rate
s = 100. The uncertainty on the vulnerable-host distribution
and the information bits extractable for different scanning
methods are shown in Table III. The simulation stops when
the malware has sent out 103 scans for RS, /16 OPT IS, /16
IS, /16 LS, and 2LLS, and 65,535 scans for /16 MSS 2. Then,
we count the number of vulnerable hosts hit by the malware
scans and compute the infection rate. The results are averaged
over 104 runs. Table III compares the simulation results (i.e.,
sample mean) with the analytical results (i.e., Equations (20),
(22), (24), (28), (29), and (30)). Here, a /16 LS malware uses
pa = 0.75, whereas a 2LLS malware employs pb = 0.25 and
pc = 0.5. We observe that the sample means and the analytical
results are almost identical.

We observe that network-aware malwares have much larger
infection rates than random-scanning malwares. LS indeed
increases the infection rate with nearly a non-uniformity
factor and approaches the capacity of suboptimal IS. This
is significant as LS only depends on one or two parameters
(i.e., pa for /l LS and pb, pc for 2LLS), while IS requires the
information of the vulnerable-host distribution. On the other
hand, LS has a larger sample variance than IS as indicated
by Table III. This implies that the infection speed of an LS
malware depends on the location of initially infected hosts.
If the LS malware begins spreading from a subnet containing
densely populated vulnerable hosts, the malware would spread
rapidly. Furthermore, we notice that the MSS malware also has
a large infection rate at the second stage, indicating that MSS
can indeed exploit the clustering pattern of the distribution.
Meanwhile, the large sample variance of the infection rate of
MSS 2 reflects that an MSS malware strongly depends on the

initially infected hosts. We further compute the infection rate
of a /16 MSS malware that includes both random-scanning and
sequential-scanning stages. Simulation results are averaged
over 106 runs and are summarized in Table IV. These results
strongly depend on the total number of malware scans. When
the number of malware scans is small, an MSS malware
behaves similar to a random-scanning malware. When the
number of malware scans increases, the MSS malware spends
more scans on the second stage and thus has a larger infection
rate.

TABLE IV
INFECTION RATES OF A /16 MSS MALWARE.

# of malware scans 10 100 1000 10000 50000
Sample mean 0.0108 0.0190 0.0728 0.2866 0.4298

Sample variance 0.1246 0.1346 0.1659 0.2498 0.2311

B. Dynamic Malware Propagation

An infection rate only characterizes the early stage of mal-
ware propagation. We now employ the analytical active worm
propagation (AAWP) model and its extensions to characterize
the entire spreading process of malwares [6]. Specifically, the
spread of RS and IS malwares is implemented as described
in [8], whereas the propagation of LS malwares is modeled
according to [21]. The parameters that we use to simulate a
malware are comparable to those of the Code Red v2 worm.
Code Red v2 has a vulnerable population N = 360, 000 and
a scanning rate s = 358 per minute [30]. We assume that
the malware begins spreading from an initially infected host
that is located in the subnet containing the largest number of
vulnerable hosts. We show the propagation speeds of network-
aware malwares for the same vulnerable-host distribution from
data set D1-80. From Section V, we expect that a network-
aware malware can spread much faster than an RS malware.
Figure 4 demonstrates such an example on a malware that uses
different scanning methods. It takes an RS malware 10 hours
to infect 99% of vulnerable hosts, whereas a /8 LS malware
with pa = 0.75 or a /8 IS malware takes only about 3.5 hours.
A /16 LS malware with pa = 0.75 or a 2LLS malware with
pb = 0.25 and pc = 0.5 can further reduce the time to 1 hour.
A /16 IS malware spreads fastest and takes only 0.5 hour.

VII. EFFECTIVENESS OF DEFENSE STRATEGIES

What are new requirements and challenges for a defense
system to slow down the spread of a network-aware malware?
We conduct an initial study on the effectiveness of defense
strategies through non-uniformity factors.
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Fig. 4. A network-aware malware spreads over the D1-80 distribution.

A. Host-Based Defenses

Host-based defenses have been widely used for random-
scanning malwares. Proactive protection and virus throttling
are examples of host-based defense strategies. A proactive
protection (PP) strategy proactively hardens a system, mak-
ing it difficult for a malware to exploit vulnerabilities [3].
Techniques used by PP include address-space randomization,
pointer encryption, instruction-set randomization, and pass-
word protection. Thus, a malware requires multiple trials
to compromise a host that implements PP. Specifically, let
p (0 ≤ p ≤ 1) denote the protection probability or the
probability that a single malware attempt succeeds in infecting
a vulnerable host that implements PP. On the average, a
malware should make 1

p exploit attempts to compromise the
target. We assume that hosts with PP are uniformly deployed
in the Internet. Let d (0 < d ≤ 1) denote the deployment ratio
of the number of hosts with PP to the total number of hosts.

To show the effectiveness of the PP strategy, we consider
the infection rate of a /l IS malware. Since now some of the
vulnerable hosts implement PP, Equation (24) changes to

α
(l)
IS =

sN

232−l

2l∑

i=1

[
dp

(
p(l)

g (i)
)2

+ (1− d)
(
p(l)

g (i)
)2

]

= αRSβ(l)(1− d + dp). (32)

To slow down the spread of a suboptimal IS malware to that
of a random-scanning malware, β(l)(1−d+dp) ≤ 1, resulting
in

p ≤ 1− (1− d)β(l)

dβ(l)
. (33)

When PP is fully deployed, i.e., d = 1, p can be at most
1

β(l) . On the other hand, if PP provides perfect protection, i.e.,
p = 0, d should be at least 1 − 1

β(l) . Therefore, when β(l) is
large, Inequality (33) presents high requirements for the PP
strategy. For example, if β(16) = 50 (most of β(16)’s in Table
II are larger than this value), p ≤ 0.02 and d ≥ 0.98. That is,
a PP strategy should be almost fully deployed and provide a
nearly perfect protection for a vulnerable host.

We next consider the virus throttling (VT) strategy [27]. VT
constrains the number of outgoing connections of a host and
can thus reduce the scanning rate of an infected host. We find
that Equation (32) also holds for this strategy, except that p is
the ratio of the scanning rate of infected hosts with VT to that
of infected hosts without VT. Therefore, VT also requires to
be almost fully deployed for fighting network-aware malwares
effectively.

From these two strategies, we have learned that an effec-
tive strategy should reduce either αRS or β(l). Host-based
defenses, however, are limited in such capabilities.

B. IPv6
IPv6 can decrease αRS significantly by increasing the

scanning space [32]. But the non-uniformity factor would
increase the infection rate if the vulnerable-host distribution
is still non-uniform. Hence, an important question is whether
IPv6 can counteract network-aware malwares when both αRS

and β(l) are taken into consideration.
We study this issue by computing the infection rate of a

network-aware malware in the IPv6 Internet. As pointed out by
[2], a smart malware can first detect some vulnerable hosts in
/64 subnets containing many vulnerable hosts, then release to
the hosts on the hitlist, and finally spread inside these subnets.
Such a malware only scans the local /64 subnet. Thus, we
focus on the spreading speed of a network-aware malware
in a /64 subnet. From Figure 2, we extrapolate that β(32) in
the IPv6 Internet can be in the order of 105 if hosts are still
distributed in a clustered fashion. Using the parameters N =
108 proposed by [14] and s = 4, 000 used by the Slammer
worm [18], we derive the infection rate of a /32 IS malware in
a /64 subnet of the IPv6 Internet: αIPv6

IS = sN
264 ·β(32) = 2.2×

10−3. αIPv6
IS is larger than the infection rate of the Code Red

v2 worm in the IPv4 Internet, where αCR
RS = 360,000×358/60

232 =
5×10−4. Therefore, IPv6 can only slow down the spread of a
network-aware malware to that of a random-scanning malware
in IPv4. To defend against the malware effectively, we should
further consider how to slow down the increase rate of β(l) as
l increases when IPv4 is updated to IPv6.

C. Discussions
Defending against network-aware malwares is challenging

also due to the unknown causes of vulnerable-host distribu-
tions. That is, why the vulnerable-host distribution is highly
non-uniform in the IPv4 address space. An answer to this
question would involve other studies that are beyond the scope
of this work. Nevertheless, we hypothesize several possible
reasons. First, no vulnerable hosts can exist in reserved or
multicast address ranges [37]. Second, different subnet ad-
ministrators may make different use of their own IP address
space. For example, an administrator may intend to use NATs
extensively, whereas another administrator would consider to
distribute the global IP addresses first. Third, a subnet intends
to have many computers with the same operating systems and
applications for easy management [26], [6]. Last, some subnets
are more protected than others [1], [21]. Studying these issues
may provide insights on new defense strategies, which can be
considered as a future direction.



11

VIII. CONCLUSIONS

In this paper, we have derived a simple metric, known as
the non-uniformity factor, to quantify an uneven distribution
of vulnerable hosts. The non-uniformity factor, shown as a
function of the Renyi entropies of order two and zero, better
characterizes the uneven feature of a distribution than the
Shannon entropy. Moreover, we have drawn a relationship
between Renyi entropies and randomized epidemic scanning
algorithms. Specifically, we have related the information bits
extracted by malwares from a vulnerable-host distribution with
the propagation speed of network-aware malwares. Further-
more, we have evaluated the effectiveness of several com-
monly used defense strategies on network-aware malwares.
The host-based defenses, such as proactive protection or virus
throttling, require to be almost fully deployed to slow down
malware spreading at the early stage. This implies that host-
based defenses would be weakened significantly by network-
aware scanning. More surprisingly, different from previous
findings, we have shown that network-aware malwares can be
zero-day malwares in the IPv6 Internet if vulnerable hosts are
still clustered. These findings present a significant challenge to
malware defenses: Entirely different strategies may be needed
for fighting network-aware malwares.

As part of our ongoing work, we plan to study in more
depth relationships between information theory and dynamic
malware attacks and develop effective detection and defense
systems that exploit vulnerable-host distributions.
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