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Abstract— Network security is an important task of network
management. One threat to network security is malware (ma-
licious software) propagation. One type of malware is called
topological scanning that spreads based on topology information.
The focus of this work is on modeling the spread of topological
malwares, which is important for understanding their potential
damages, and for developing countermeasures to protect the
network infrastructure. Our model is motivated by probabilis-
tic graphs, which have been widely investigated in machine
learning. We first use a graphical representation to abstract
the propagation of malwares that employ different scanning
methods. We then use a spatial-temporal random process to
describe the statistical dependence of malware propagation in
arbitrary topologies. As the spatial dependence is particularly
difficult to characterize, the problem becomes how to use simple
(i.e., biased) models to approximate the spatially dependent
process. In particular, we propose the independent model and
the Markov model as simple approximations. We conduct both
theoretical analysis and extensive simulations on large networks
using both real measurements and synthesized topologies to
test the performance of the proposed models. Our results show
that the independent model can capture temporal dependence
and detailed topology information, and thus outperforms the
previous models, whereas the Markov model incorporates a
certain spatial dependence and thus achieves a greater accuracy
in characterizing both transient and equilibrium behaviors of
malware propagation.

Index Terms— Security, Malware, Modeling, Stochastic pro-
cesses, Graphical models

I. INTRODUCTION

Protecting a computer system from malicious attacks is
a key challenge to network security and management. One
such attack is due to malware propagation. The frequency and
virulence of malware outbreaks have increased dramatically
in the last few years, posing a significant threat to network
infrastructure.

Malware is malicious software in short, which is designed
specially for either damaging or disrupting a computer sys-
tem. This terminology is used to cover an entire gamut
of hostile softwares including viruses, Trojan Horses, and
network worms [1]. There are mainly two types of malwares
categorized by how they spread. Active network worms such as
Sapphire and Morris exploit self-propagating malicious code
[2], whereas viruses such as Melissa and Concept need human
interactions to spread [3]. Spreading can take place rapidly,
resulting in potential network damages and service disruptions.
Hence, an important step towards preventing such catastrophic
events is to study the dynamic behavior of malware spreading.
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Recent investigations of malware propagation focus mostly
on modeling the spread of malwares employing random scan-
ning scheme [2], [4], [5]. Random scanning selects targets to
infect randomly. Malwares, however, can use other scanning
methods. For example, Morris worm exploits topological scan-
ning, which examines local configuration files to find potential
neighbors [6]. Although only a few topological malwares
are known, topological scanning is a potential thread to the
network routing infrastructure, World Wide Web (WWW)
networks, and peer-to-peer systems [7], where topologies play
an important role for malware propagation [8]. Only a handful
work, however, has been done on topological-scanning mal-
wares. For instance, contact process is used to analyze the ease
of propagation on different topologies [9]. The difficulty lies
in characterizing the impact of topology and the interactions
among nodes in both space and time [10]. Such interactions
result in a complex spatial-temporal dependence, which is
especially hard to model.

The goal of this work is to develop a modeling framework
and mathematical models that can characterize the spread
of malwares employing different scanning strategies and the
impact of the underlying topology on malware propagation.
To this purpose, we first abstract the problem of malware
propagation using a graphical representation so that differ-
ent scanning methods can be mapped to the corresponding
topologies and parameters. With the help of the graphical rep-
resentation, we then formulate malware propagation through
a spatial-temporal random process based on the interactions
among nodes. We take advantage of a discrete-time model
and detailed topology information to describe the spatial and
temporal statistical dependencies of malware propagation in
arbitrary networks.

As the temporal dependence can be naturally modeled as
Markov, spatial dependence requires calculations with a mul-
tivariate probability distribution. When the number of random
variables is large, an exact solution of spatial dependence is
computationally too expensive to obtain. The problem then
becomes how to approximate the spatial dependence using
a simple, i.e., biased model, in a general setting of ma-
chine learning. In particular, spatial approximation is studied
in light of the mean-field approximation [11]. Mean-field
approximation is widely studied in machine learning [11]
but usually for static networks where time is not involved.
Exact mean-field solutions for dynamic networks are complex.
Hence we consider in this work simple approximations. The
simplest approximation assumes spatial independence, which
is asserted in our independent model. The spatial independence
assumption factorizes an exact joint probability distribution
into a form that only depends on one-node marginal proba-
bilities. Although the independent model ignores the spatial
dependence, it captures temporal dependence and detailed



topology information. Simulation results show that the inde-
pendent model performs better than the previous models in
characterizing the transient behavior of malware propagation.
A test on spatial correlation though indicates a strong spatial
dependence among nodes. We therefore present the Markov
model that incorporates the simplest spatial dependence as
the conditional independence, motivated by the Bethe approx-
imation used in graphical models [12]. The spatial Markov
assumption factorizes an exact joint probability distribution
into a form that only depends on one-node and two-node
marginal probabilities. We have conducted both theoretical
analysis and extensive simulations on real and synthesized
topologies of large networks. Our results demonstrate that the
Markov model equipped with the simple spatial dependence
can achieve a greater accuracy than the independent model,
especially in the sparse graphs. We then use a relative entropy
to illustrate a performance gap between the Markov model and
the reality, suggesting directions for further improvements.

We apply our proposed models to describe the final size of
infection, which corresponds to the equilibrium solution and
characterizes the potential damage of malware propagation.
Simulation results show that the Markov model can character-
ize the final size of infection no matter whether the underlying
network is a homogeneous network or a complex network.

Several approaches have been proposed to model and
simulate malware spreading in different topologies. Kephart
and White presented the Epidemiological model, which is
suitable to analyze virus spreading in random graphs [10]. This
work points out the difficulty in applying the Epidemiological
model to study arbitrary topologies. Garetto et al. analyzed
malware spreading in small-world topologies using a variation
of the influence model, where the influence of neighbors is
constrained to take a multilinear form [3]. Boguñá et al.
studied epidemic spread in complex networks [13], and Wang
et al. proposed a model for virus propagation in arbitrary
topologies [14]. Both work [13], [14] is proposed to obtain
the epidemic threshold of virus infection. Zou et al. and Wang
et al. investigated the effect of topology and immunization
on the propagation of computer virus through simulation [8],
[15]. Ganesh et al. modeled the spread of an epidemic as a
contact process [16] to study what makes an epidemic either
weak or potent [9]. The model assumes that a vulnerable
node can be infected by its infected neighbors at a rate
that is proportional to the number of infected neighbors.
Some recent investigations focus on random-scanning worms.
Zou et al. modeled the spread of Code Red, taking into
consideration of the human countermeasures and the worm’s
impact on Internet infrastructure [4]. Chen et al. studied the
propagation of active worms employing random scanning and
extended the proposed modeling method to investigate the
spread of localized-scanning worms [5]. Moore et al. applied
the Epidemiological model to investigate the requirements
for containing the self-propagation worm with random target
selection [2]. The prior work, however, has not incorporated
the spatial dependence on malware propagation in networks.
This motivates the development of mathematical models to
capture the spatial dependence, and the use of spatial models to
characterize both transient and equilibrium behaviors of mal-

ware propagation with different scanning methods in arbitrary
topologies. Furthermore, based on the models proposed in this
paper we study the significance of the spatial dependence in
determining epidemic thresholds and the speed of propagation
[17].

The rest of this paper is organized as follows. In Section II,
we provide a problem formulation of malware propagation.
In Section III, we model the spread of malwares accurately
through a spatial-temporal random process. To approximate
the spatial dependence, we present the independent model
and the Markov model in Sections IV and V, respectively.
In Section VI, we apply our proposed models to estimate the
final size of infection. We conclude this paper in Section VII
with a brief summary and an outline of future work.

II. MALWARE PROPAGATION IN NETWORKS

In this section, we first introduce malware propagation
briefly. We then abstract the problem using a susceptible →
infected → susceptible (SIS) model and a graphical represen-
tation. Finally, we model different scanning mechanisms using
graphical representations.

A. Malware Propagation
A computer is called infected if a malware is present there,

and susceptible if it could be infected by the intrusion of
the malware. If a malware cannot exist on the computer, we
call this computer insusceptible to the malware. An infected
computer is cured if it removes the copy of the malware and
recovers to be susceptible. Final size of infection is defined as
the number of initially susceptible computers that ultimately
become infected in a network. The widespread occurrence
of a malware is referred to as an epidemic [18]. Malware
propagation is a procedure that the malware infects as many
computers as possible through network connections. Those
connections can be logical as to be described below.

A malware can propagate in many ways. For example, when
a worm is released into the Internet, it scans many machines
among its neighbors in an attempt to find a susceptible
machine. When a vulnerable host is found, the worm sends out
a probe to infect the target. If successful, a copy of this worm is
transferred to the new host, which then begins to run the worm
code and tries to infect other targets. Morris worm is a typical
self-propagation malware and moves from node to node using
only its own and the infected node’s local information [6].
Specifically, Morris worm retrieves the neighbor list from the
local Unix files /ect/hosts.equiv and /.rhosts and in individual
users’ .forward and .rhosts files. Another topological worm is a
SSH worm, which locates new targets by searching its current
host for the names and addresses of other hosts that are likely
to be susceptible to infection [19]. Email virus is an other
example of topological malwares. When an email user receives
an email message and opens the attachment containing a
virus program, the virus infects the user’s machine and uses
the recipient’s address book to send copies of itself to other
email addresses. The addresses in address book represent the
neighborhood relationship. A birth rate (or an infection rate)
is introduced to denote the rate at which an infected computer



can infect a susceptible neighbor. The birth rate is affected
by many factors. For example, for worms, the factors include
the number of computer’s susceptible neighbors, payload size
of the malware copy, exploited computer vulnerability, and
network congestion. For email virus, the factors include email
checking frequency, user vigilance in opening an email attach-
ment, and mailbox configuration. Some malwares may have a
large birth rate to flood the network as quickly as possible,
whereas other malwares spread slowly and surreptitiously to
evade detection and thus have a small birth rate.

An infected computer might die for encountering an un-
expected resource limit on the computer. Moreover, during
the spreading of a malware, some infected computers may
stop functioning properly, forcing the users to reboot these
machines or kill some of the processes exploited by the mal-
ware. These computers are then cured, but subject to further
infection. A death rate (or a cure rate) is introduced to denote
the rate at which an infected computer becomes susceptible.
The death rate is affected by many factors, such as resources
on the computers, user alertness, the ability of a malware to
disguise, and the performance of Intrusion Detection System
(IDS).

Combining infection and recovery, we have one of the
simplest epidemiological models, the susceptible → infected
→ susceptible (SIS) model, which is widely used in the
epidemiological research [18]. Such a model neglects the
details of infection inside a single computer, abstracts the
malware transmission and removal as probabilities per unit
time in the form of birth rate and death rate, and considers
a computer to be in one of the two possible discrete status,
infected or susceptible. Although simple, the SIS model can
capture key characteristics of malware spreading dynamics.
The susceptible → infected (SI) model further ignores recovery
and is regarded as a special case of the SIS model.

The SIS model assumes that an infected computer cannot
be re-infected. The model also assumes that users do not
become more vigilant after experiencing a malware infection.
Therefore, the birth rate and the death rate do not change with
time. Moreover, in this paper we ignore patching, which is
usually employed to repair security holes at the computers.
This is because the spreading of malware can be much
faster compared with traditional patching techniques that need
human intervention, and a patch may not be available when
some malware attacks unknown vulnerabilities. Nevertheless,
our proposed models can be easily extended to take patching
into consideration.

B. Graphical Representation
A malware network consists of all nodes in a network that

are either infected or susceptible. A malware network can be
constructed by removing insusceptible nodes and the edges
associated with these nodes in the original network. Hence,
a malware network is an abstraction of vulnerable nodes,
which can be either end-hosts, routers, and servers, or email
addresses.

We use a directed graph G(V, E) to represent a malware
network, where V is the set of nodes and E is the set of
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Fig. 1. Directed graph (S=Susceptible, I=Infected).

edges. As defined in Section II-A, each node has two status,
susceptible or infected, as illustrated in Figure 1. Each edge
(j, i) is associated with βji, the birth rate at which an infected
node j can infect a susceptible neighbor i. Similarly, each node
i is associated with δi, the death rate at which an infected node
i becomes susceptible. A neighborhood of node i, denoted by
Ni, is a subset of V such that every node j in this subset has an
edge from node j to node i, i.e., Ni = {j|(j, i) ∈ E}. Figure 1
shows an example of directed graph wherein the neighborhood
of node 1 is given as N1 = {3, 4, 5}.

In this paper, we consider two widely used types of net-
works in the research of epidemic modeling: homogeneous
networks and complex networks [13]. In a homogeneous
network, each node has roughly the same nodal degree. A
fully-connected topology, a standard hypercubic lattice, and an
Erdös-Rényi (ER) random network are three typical examples
of homogeneous networks [20]. In a complex network, the
nodal degree complies to a particular distribution. A widely-
studied representative complex network has a power-law topol-
ogy, where the nodal degree distribution is characterized
as P (k) ∼ k−r with P (k) being the probability that a
node has a degree of k [21]. It has been shown that AS-
level Internet topology, WWW networks, and some overlay
topologies of peer-to-peer systems can be described by power-
law characteristics [22], [23]. Moreover, the email groups and
network exhibit the power-law distribution, which is observed
in [8] and [24]. Hence, a malware network with a power-law
topology can be used to study potential malware propagation
on those networks.

C. Scanning Methods
A malware spreads by employing distinct scanning mecha-

nisms such as random, localized, and topological scanning [7].
Although the nature of scanning methods is different, they can
be modeled using the same graphical representation.

Random scanning is used by some well-known malwares
such as Code Red v2 and Sapphire worms. A malware that em-
ploys random scanning selects target IP addresses at random.
If each IP address is visualized as a network node, random
scanning results in a fully-connected topology illustrated in
Figure 2(a), where the birth rate (β) is identical for every
edge.
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Fig. 2. Graphical representations of scanning methods.

Localized scanning is used by Code Red II and Nimda
worms. Instead of selecting targets randomly, a malware
preferentially scans for hosts in the “local” address space. Such
a scanning scheme results in a fully-connected topology such
as the one illustrated in Figure 2(b), where nodes within a
group (e.g., IP addresses with the same first two octets) infect
one another with the same birth rate (β1), whereas nodes in
different groups infect one another with a different birth rate
(β2).

Topological scanning is used by Email viruses and Mor-
ris/SSH worms. The malware relies on the information con-
tained in the victim machine in order to locate new targets. The
information may include routing tables, email addresses, a list
of peers, and Uniform Resource Locations (URLs). Topolog-
ical scanning scheme can result in an arbitrary topology such
as an undirected power-law topology illustrated in Figure 2(c),
where βi’s and δi’s (i = 1, 2, · · · , 5) represent different birth
rates and death rates.

Although only a few topological worms are known, topolog-
ical scanning is worth investigating for the following reasons.
First, the network routing infrastructure, World Wide Web
(WWW) networks, and peer-to-peer systems are vulnerable
to topological scanning. For example, a malware attacking a
website could look for neighboring websites in its URLs and
use these websites as targets. Second, when IPv4 is upgraded
to IPv6, the address space will be much sparser. It would
be difficult for either random-scanning or localized-scanning
worms to find a target in the IPv6 address space. Therefore,
topological scanning may be preferred by attackers. Finally,
models of such malware-propagation would provide insights
for developments of countermeasures, which are lacking for
topological worms.

III. SPATIAL-TEMPORAL MODEL

The problem of modeling malware propagation in networks
can be stated as follows: Given a malware network topology,
values of βji’s and δi’s, and an initial infection node, what is
the expected number of infected nodes at time t? To approach
this problem, we formulate malware propagation through a
spatial-temporal random process based on local interactions
of nodes in networks.

Let Xi(t) denote the status of a network node i at time t,
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Fig. 3. State diagram of a node i.

where t represents discrete time.

Xi(t) =

{

1, if node i is infected at time t;
0, if node i is susceptible at time t.

As node i can be infected only by its neighbors, Xi(t) is
statistically dependent on Xi(t − 1) and the status of its
neighbors. Since the status of a neighbor also depends on
its own neighbors, conceptually, the status of all nodes is
statistically dependent in space and time. Let vector X(t)
denote the status of all nodes at time t, i.e., X(t) =
{X1(t), X2(t), · · · , XM (t)}, where M represents the total
number of nodes in the network. X(t) is then a spatial-
temporal process.

If node i is susceptible, it can be compromised by any
of its infected neighbors, e.g., node j, with a birth rate βji.
Therefore, given the status of the neighbors of node i, at the
next time step the susceptible node i can get infected with
probability βi(t) = 1−

∏

j∈Ni
(1−βji)

xj(t), where xj(t) is the
realization of the status of node j at time t and xj(t) = 0 or 1.
Otherwise, node i is infected and has a death rate δi to recover
at the next time step. This procedure can be expressed by a
Markov chain in Figure 3. Therefore, the temporal dependence
of node i can be shown as:

P (Xi(t + 1) = 0|Xi(t) = 1) = δi, (1)

P (Xi(t + 1) = 1|Xi(t) = 0, XNi
(t) = xNi

(t)) = βi(t), (2)

where vector XNi
(t) is used to denote the status of all

neighbors of node i at time t and vector xNi
(t) is the

realization of XNi
(t), i.e., XNi

(t) = {Xj(t), j ∈ Ni} and
xNi

(t) = {xj(t), j ∈ Ni}. If for ∀j, βji << 1, the birth
rate (β) is identical for every edge, and the death rate (δ)
is identical for every node, then βi(t) ≈

∑

j∈Ni
βjixj(t) =

β
∑

j∈Ni
xj(t) and δi = δ, which are assumptions used in

contact process [9].
The probability that node i recovers from infected to suscep-

tible status at time t+1 is expressed by Ri(t) = P (Xi(t+1) =
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0, Xi(t) = 1). Thus, Equation (1) leads to

Ri(t) = δiP (Xi(t) = 1). (3)

Given node i is susceptible at time t, the probability that node
i remains susceptible at the next time step can be defined
as Si(t) = P (Xi(t + 1) = 0|Xi(t) = 0). From the local
dependence of Equation (2), we have

Si(t) =
X

xNi
(t)

[P (XNi
(t) = xNi

(t)|Xi(t) = 0)(1 − βi(t))] . (4)

Therefore, the definitions of Ri(t) and Si(t) yield that for
∀i ∈ {1, 2, · · · , M},

P (Xi(t + 1) = 1) = 1 − Ri(t) − P (Xi(t) = 0)Si(t). (5)

Combined with Equations (3) and (4), Equation (5) provides
a recursive relationship between Xi(t + 1) and Xi(t), Xj(t)
for j ∈ Ni, and gives a formal stochastic model. This model
characterizes explicitly the spatial and temporal statistical
dependencies. In particular, the joint probability P (XNi

(t) =
xNi

(t)|Xi(t) = 0) characterizes the spatial dependence due
to network topology and nodal interactions. The transition
probabilities, βi(t) and δi, characterize the temporal evolution
due to infection and recovery. Together, they describe the
spatial-temporal process of malware propagation in networks.
The expected number of infected nodes at time t, n(t),
can be easily computed from P (Xi(t) = 1), i.e., n(t) =
E[

∑M

i=1 Xi(t)] =
∑M

i=1 P (Xi(t) = 1).
Although in principle, Equation (5) can be used to study the

behavior of malware propagation, it is challenging to model
the spatial dependence. This is because the joint probability
P (XNi

(t) = xNi
(t)|Xi(t) = 0) is computationally too

expensive to obtain, especially when the size of neighborhood
is large. For example, if node i has k neighbors, the total
number of status needed to describe this joint probability is
O(2k). Therefore, we introduce approximations for spatial de-
pendence in Sections IV and V. An example of the dependency
graph of the joint probability P (XNi

(t) = xNi
(t)|Xi(t) = 0)

is shown in Figure 4(a), where node i has three neighbors (i.e.,
nodes 1, 2, 3) and all nodes are dependent on each other.

Remark: It is noted that the mean-field methods are used
to reduce the computational complexity involved in typical
calculations with multivariate probability distributions when
the number of random variable is large [11]. The mean-field

methods, however, are difficult to be employed directly to our
problem. A typical context for a mean-field approximation is to
compute the marginal probabilities and expectations of a given
joint distribution. Our problem, however, requires to obtain an
accurate joint distribution based on the marginal probabilities.
Moreover, in many cases the mean-field methods use a set
of recursions to find a stationary solution of a corresponding
optimization problem in space [25], whereas the topological
malware propagation involves both space and time. Although
the mean-field methods are currently difficult to be grafted
directly to malware propagation problem, the spirit of the
mean-field theory motivates our approach for approximating
spatial dependence. For example, the naive mean field assumes
that each random variable acts independently and thus approx-
imates the true distribution through a complete factorization
[11]. This idea is adopted by our independent model.

IV. INDEPENDENT MODEL

The simplest spatial approximation is to assume indepen-
dence, resulting in our independent model.

A. Model
In the independent model, we assume that the status of all

nodes at time t (t = 0, 1, 2, · · · ) is spatially independent. That
is,

P (X(t) = x(t)) =

M
∏

i=1

P (Xi(t) = xi(t)), (6)

where x(t) is the realization of X(t), i.e., x(t) =
{x1(t), x2(t), · · · , xM (t)}. With the spatial independence as-
sumption, the dependency graph shown in Figure 4(a) is
reduced to the graph shown in Figure 4(b), which is a
graph with no edges. Thus, the joint probability P (XNi

(t) =
xNi

(t)|Xi(t) = 0) can be factorized into a form that only
depends on one-node marginal probabilities. This kind of
full factorization is also employed in the naive mean-field
approach, where each factor is obtained through the mean-
field equations [25].

Theorem 1: (Independent Model) If the status of all nodes
at the same time step is spatially independent, the state
evolution of node i from Equation (5) satisfies

P (Xi(t + 1) = 1) = 1 − Ri(t) − P (Xi(t) = 0)Sind
i (t), (7)



where

Sind
i (t) =

∏

j∈Ni

[1 − βjiP (Xj(t) = 1)]. (8)

PROOF: Since the status of all nodes at time t is spatially
independent, it is true that

P (XNi
(t) = xNi

(t)|Xi(t) = 0) =
Y

j∈Ni

P (Xj(t) = xj(t)).

With this assumption, it follows from Equation (4) that

Sind
i (t)

=
∑

xNi
(t)

∏

j∈Ni

[

P (Xj(t) = xj(t))(1 − βji)
xj(t)

]

=
∏

j∈Ni

∑

xj(t)

[

P (Xj(t) = xj(t))(1 − βji)
xj(t)

]

=
∏

j∈Ni

[P (Xj(t) = 0) + P (Xj(t) = 1)(1 − βji)]

=
∏

j∈Ni

[1 − βjiP (Xj(t) = 1)],

where the exchange of the summation and product signs is
because: Set f(xj(t)) = P (Xj(t) = xj(t))(1 − βji)

xj(t) and
j = 1, 2, · · · , K, where K is the number of neighborhood of
node i; thus
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Such an independent model is intuitive. That is, node j,
one of the neighbors of node i, can infect node i with
probability βjiP (Xj(t) = 1). Thus, the probability that
node i cannot be infected by its neighbors at time t + 1 is
∏

j∈Ni
[1 − βjiP (Xj(t) = 1)], according to the independence

assumption. Although ignoring the spatial dependence, the in-
dependent model maintains temporal dependence and detailed
topology information. Moreover, if node i has k neighbors, the
total number of status needed to describe the joint probability
P (XNi

(t) = xNi
(t)|Xi(t) = 0) is reduced from O(2k) to

O(k).
Remark: It should be noted that the spatial independence

assumption is implicitly used in the prior work [14]. The
independent model given here, however, is different from the
model proposed in [14] in the following aspects. First, our
proposed model is derived from the accurate spatial-temporal
process and the explicit approximation on spatial dependence.
Second, our independent model only allows one event (i.e.,
susceptible → infected, or infected → susceptible) in one
single discrete time step, whereas the model in [14] grants
concurrence of infection and recovery. Finally, our model
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Fig. 5. Malware propagation in a 2D-lattice with 10,000 nodes, β = 0.1,
and δ = 0.1.

focuses on the transient behavior of malware propagation,
whereas the model in [14] emphasizes on the steady-state
solution and the epidemic threshold.

B. Performance
How good is the performance of this independent model?

We compare the performance of the independent model with
that of some well-known models and the simulation results
in both homogeneous and complex networks. For simplicity,
we consider the special cases where the birth rate (β) is
identical for every edge and the death rate (δ) is identical
for every node. Such an assumption is used in all previous
models. Simulation provides a benchmark for assessing the
performance of models. For the simulation, we track each
node’s status (infected or susceptible) in discrete time. Each
simulation has 100 individual runs and is averaged over the
cases that the malware survives1.

1) Homogeneous Networks: In homogeneous networks, the
standard Epidemiological model uses a nonlinear differential
equation to measure the malware population dynamics [10]:

dn(t)

dt
= βkn(t)[1 −

n(t)

M
] − δn(t), (9)

where k is the average nodal degree. The solution to the above
equation is

n(t) =
n(0)M(1 − ρ)

n(0) + [M(1 − ρ) − n(0)]e−(β′−δ)t
, (10)

where β′ = βk and ρ = δ
β′

. Another model used in homo-
geneous networks is the Analytical Active Worm Propagation
(AAWP) model, which uses a discrete time equation [5]:

n(t+1) = (1−δ)n(t)+ [M −n(t)][1− (1−
1

M
)sn(t)], (11)

where the scanning rate s = βk and the patching rate is
ignored. Both the Epidemiological model and the AAWP
model have been used to model the spread of active worms
that employ random scanning, and shown to perform well if

1We focus on the transient behavior of epidemic malware and ignore the
cases that the malware dies out.
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the underlying graph is an ER random graph with a large k

or a fully-connected topology [10], [5].
Figure 5 shows the evolution of the average number of

infected nodes for the Epidemiological model, the AAWP
model, the independent model, and the simulation on a four-
neighbor two-dimensional lattice with 10,000 nodes, β = 0.1,
and δ = 0.1. The 2D-lattice considered in this paper is
wrapped around in both dimensions to form a torus. It is
observed that all three models over-predict the growth of
infected nodes. The independent model, however, describes
the transient behavior of malware propagation better than the
other two models.

2) Complex Networks: Boguñá et al. classify the complex
networks into two types: uncorrelated and correlated complex
networks, and present epidemic models for each type [13].
We name these two models as Uncorrelated Complex Network
(UCN) model and Correlated Complex Network (CCN) model.
In these models, the number of infected nodes with a degree of
k at time t, nk(t), can be described by the following equation
[13]:

dnk(t)

dt
= βk[1 −

nk(t)

Mk

]Θk(t) − δnk(t), (12)

where Mk is the total number of nodes with a degree of k

and
∑

k Mk = M . In the UCN model, Θk(t) is independent
of k and defined as

Θk(t) =
Mk

k

∑

k′

k′P (k′)
nk′(t)

Mk′

; (13)

whereas in the CCN model, the effect of the degree k is
considered and the expression for Θk(t) is

Θk(t) = Mk

∑

k′

P (k′|k)
nk′(t)

Mk′

. (14)

Figure 6 compares the predictions of the independent model
against the UCN model in a Barabási-Albert (BA) network,
which is a type of power-law networks [22]. BA networks
considered in this paper are generated using the AS-level BA
model in BRITE simulator [26], which is a tool for topol-
ogy generation. BRITE simulator can provide good synthetic
topologies that are the base of our simulations. In Figure 6,
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Fig. 7. Spatial correlation in 2D-lattice with 10,000 nodes, β = 0.1, and
δ = 0.1.

the BA network has 10,000 nodes, with k = 1.9998, β = 0.5,
and δ = 0.1. The infection starts at a single node with a
degree of 5. Since the BA networks lack correlations [27],
we only consider the UCN model for BA networks. It is
observed that both the independent model and the UCN model
over-predict the spread of malware. When compared with the
simulation results, however, the independent model yields a
greater accuracy than the UCN model.

An intuitive explanation for the results in Figures 5 and
6 can be given as follows: The Epidemiological model, the
AAWP model, and the UCN model express the propagation
dynamics in terms of how many nodes are infected, without
delving into the details of which nodes are infected [10],
whereas the independent model considers the details of how
nodes are connected to one another. Therefore, the topology
information can help us obtain models better than the previous
ones. Moreover, the independent model can be used in arbi-
trary graphs and with varying βji’s or δi’s, whereas the other
models are used in special graphs and assume that βji (or δi)
is identical for every edge (or node).

C. Test of Spatial Independence Assumption
As the independent model achieves better performance than

the previous models, Figures 5 and 6 still show obvious perfor-
mance gaps between the independent model and the simulation
results. Is the spatial independence a good enough assumption?
To answer this question, we consider the correlation coefficient
ρij(t) between the status of node i and node j, which is
defined as

ρij(t) =
E[Xi(t)Xj(t)] − E[Xi(t)]E[Xj(t)]

√

V ar[Xi(t)]V ar[Xj(t)]
, (15)

where E[Xi(t)Xj(t)] = P (Xi(t) = 1, Xj(t) = 1),
E[Xi(t)] = P (Xi(t) = 1), and V ar[Xi(t)] = P (Xi(t) =
1)[1 − P (Xi(t) = 1)]. If the status of node i is independent
of that of node j, ρij = 0. Otherwise, if the status of nodes i,
j is positively (or negatively) correlated, ρij > 0 (or ρij < 0).
We obtain the correlation coefficients through simulation on a
four-neighbor 2D-lattice, with 10,000 nodes, β = 0.1, δ = 0.1,
and 1,000 individual runs. In this 2D-lattice, each node is



represented by its coordinate (x, y), where x, y are integers
and 0 ≤ x, y ≤ 99. Node (x, y) has four neighbors (x− 1, y),
(x + 1, y), (x, y − 1), and (x, y + 1), where the arithmetic
operations are modular on 100. We assume that the malware
begins to spread from node (0, 0), and consider the correlation
coefficients between the status of node (0, 0) and node (0, i)
(denoted by ρi(t)) for i = 1, 2, 3. Figure 7 shows how the
correlation coefficients vary with time. It is observed that the
correlation coefficients are initially close to 0, but increase
with time. When t > 50, all coefficients are larger than 0.25.
This shows a strong dependence in space among nodes, and
suggests a better model that accounts for spatial dependence.

V. MARKOV MODEL

A. Model
Our Markov model assumes a conditional independence in

space [28]. That is, at time t (t = 1, 2, 3, · · · ), given the
status of node i the status of its neighbors is (conditionally)
independent,

P (XNi
(t) = xNi

(t)|Xi(t) = xi(t))

=
∏

j∈Ni

P (Xj(t) = xj(t)|Xi(t) = xi(t)). (16)

With the spatial Markov assumption, the dependency graph
shown in Figure 4(a) is changed to the graph shown in Figure
4(c), where the edges between the neighbors of node i are
deleted. The spatial Markov assumption is motivated by the
Bethe approximation [12], a way of deriving and correcting the
mean-field theory, which has been widely investigated in the
area of machine learning. The Bethe approximation factorizes
an exact joint probability distribution into a form that only
depends on one-node and two-node marginal probabilities in a
Markov network. Moreover, the Bethe approximation is shown
to be equivalent to belief propagation in [12]. Here we adopt
the spirit of the Bethe approximation by incorporating a simple
spatial dependence into the Markov model.

Theorem 2: (Markov Model) If the status of node i’s neigh-
bors at the same time step is spatially independent given the
status of node i, then the state evolution of node i from
Equation (5) satisfies

P (Xi(t + 1) = 1) = 1 − Ri(t) − P (Xi(t) = 0)Smar
i (t), (17)

where

S
mar
i (t) =

Y

j∈Ni

[1 − βjiP (Xj(t) = 1|Xi(t) = 0)]. (18)

PROOF: Since the status of node i’s neighbors at time t is
spatially independent given the status of node i, as shown by
Equation (16), Equation (4) yields

S
mar
i (t)

=
X

xNi
(t)

Y

j∈Ni

h

P (Xj(t) = xj(t)|Xi(t) = 0)(1 − βji)
xj(t)

i

=
Y

j∈Ni

X

xj(t)

h

P (Xj(t) = xj(t)|Xi(t) = 0)(1 − βji)
xj(t)

i

=
Y

j∈Ni

[1 − βjiP (Xj(t) = 1|Xi(t) = 0)] .

The computation of the conditional probability P (Xj(t) =
1|Xi(t) = 0) is given in the Appendix. The Markov model
takes into account a part of the neglected correlations between
random variables (i.e., node i and its neighbors at time t)
and thus improves the approximation. The Markov model
differs from the independent model only in the probability
that one of node i’s neighbors infects node i. This probability
is βjiP (Xj(t) = 1|Xi(t) = 0) for the Markov model, whereas
it is βjiP (Xj(t) = 1) for the independent model. If the
dependence between node i and its neighbors is ignored,
the Markov model is reduced to the independent model.
Moreover, with the spatial Markov assumption, if node i has
k neighbors, the total number of status needed to describe the
joint probability P (XNi

(t) = xNi
(t)|Xi(t) = 0) is O(k).

Is it always beneficial to incorporate the spatial dependence?
We investigate this issue by introducing the notion of associ-
ation defined in [29].

Definition 1: Random variables T1, · · · , Tn are associated
if

Cov[f(T), g(T)] = E[f(T)g(T)] − E[f(T)]E[g(T)] ≥ 0

for all nondecreasing functions f and g for which E[f(T)],
E[g(T)], and E[f(T)g(T)] exist, and T = {T1, · · · , Tn}.

In most cases, if one neighbor of node i, e.g., node j,
is infected, node i then has an increasing probability to be
infected. That is, node i and node j are positively correlated
as shown in Figure 7. Therefore, the status of nodes i and
j, Xi(t) and Xj(t), is associated by definition. Furthermore,
if Xi(t) and XNi

(t) are associated random variables, we can
show in the following theorem that the Markov model indeed
achieves better performance than the independent model.

Theorem 3: (Performance Bound) If Xi(t) and XNi
(t) are

associated, then

Sind
i (t) ≤ Smar

i (t) ≤ Si(t). (19)
PROOF: Since Xi(t) and Xj(t) (j ∈ Ni) are associated,
Cov[Xi(t), Xj(t)] ≥ 0. We can write

P (Xi(t) = 1, Xj(t) = 1) ≥ P (Xi(t) = 1) · P (Xj(t) = 1),

which leads to

P (Xj(t) = 1) ≥ P (Xj(t) = 1|Xi(t) = 0). (20)

Therefore, Sind
i (t) ≤ Smar

i (t).
Given Xi(t) = 0, let f(XNi

(t)) = −(1 − βli)
Xl(t) and

g(XNi
(t)) = −

∏

j∈Ni−{l}(1−βji)
Xj (t), where l ∈ Ni. Since

XNi
(t) are associated, from the definition of association we

have
Cov [f(XNi

(t)), g(XNi
(t))|Xi(t) = 0] ≥ 0, (21)

which leads to
E [f(XNi

(t))|Xi(t) = 0] · E [g(XNi
(t))|Xi(t) = 0]

≤ E [f(XNi
(t))g(XNi

(t))|Xi(t) = 0] .

Repeated use of the above argument yields
Y

j∈Ni

E
h

(1 − βji)
Xj(t)|Xi(t) = 0

i

≤ E

2

4

Y

j∈Ni

(1 − βji)
Xj(t)|Xi(t) = 0

3

5 . (22)

That is, Smar
i ≤ Si(t).
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Fig. 8. Malware propagation in different topologies.

B. Performance

How much does the spatial Markov dependence help in
improving the performance? We compare the performance of
our proposed models with the simulation results in 2D-lattice,
ER random graph, BA power-law network, a real topology,
and a top-down hierarchical topology. Except for the 2D-
lattice, which is a regular graph, we begin each simulation
and models with a single, randomly chosen infected node on
a given topology. Each plot considers 10 different initially-
infected nodes, and each simulation plot also has 10 individual
runs for an initially-infected node.

Figure 8(a) compares the performance of the independent
model and the Markov model with the simulation results on a
four-neighbor 2D-lattice. The number of nodes M = 160, 000
and the death rate δ = 0.1. For the case of the birth rate
β = 0.5, the three curves nearly coincide with each other.
When β decreases, however, the infection spreads at a faster
rate in both the independent and the Markov models than
the simulation. In all three cases (β = 0.5, β = 0.1, β =
0.05), the Markov model yields more accurate results than the
independent model.

Figure 8(b) shows the predictions of two models with the
simulation results on an ER random graph, with 160,000
nodes, an average nodal degree k = 4, and β = 0.1.
When we constructed the ER random graph, the generated
graph was disconnected for that k is small. Therefore, in
this disconnected graph we chose the largest cluster with
156,763 nodes and an average degree of 4.07 as the target
network. It can be seen that the Markov model yields far better
performance than the independent model when compared with
the simulation results.

Figure 8(c) depicts the simulation results against two models
on a BA network, with 160,000 nodes, β = 0.1, δ = 0.1, and
< k >= k. For the case when k = 6, both models give
precise results. When k decreases, however, the predictions of
both models become worse. In all three cases (k = 6, k = 4,
k = 2), the Markov model predicts malware propagation more
accurately than the independent model.

It is observed that the parameters can affect the accuracy of

the models. When β or k is large, both the independent model
and the Markov model perform well. When both β and k are
small, however, both models fail to predict the slow growth
of malware propagation. Therefore, both models are suited
for dense graphs, where each node fluctuates independently
about its mean value. On the other hand, the Markov model
outperforms the independent model in all cases with different
parameters and underlying topologies. That is, Theorem 3 is
confirmed by the results shown in Figure 8.

Another observation is that the underlying topology can
affect the speed of malware propagation and the final size of
infection. For the case of β = 0.1 and δ = 0.1, although all
three graphs (Figure 8) have the same number of nodes and
edges, the malware spreading dynamics in these graphs are
significantly different. It takes the malware about 1,716 time
steps to enter an equilibrium stage in the 2D-lattice, whereas
it needs about 100 time steps and 66 time steps in the ER
random graph and the BA network, respectively. Moreover,
after entering the equilibrium stage, the malware infects a
total of 112,506 nodes in the 2D-lattice, 106,023 nodes in
the ER random graph, and 105,511 nodes in the BA network.
This shows the effect of network structure on the dynamics of
malware propagation.

Figure 9 shows malware propagation in real topology, ER
random graph, BA network, and four-neighbor 2D-lattice for
the special case when β = 1 and δ = 0.1. The real topology
is an AS graph collected at the Oregon router server route-
views.oregon-ix.net, which is a site for collecting BGP data
[30]. The dataset is selected on 1 June 2004 and contains
38,086 links among 17,653 ASes (k = 4.3). The constructed
ER random graph has a largest cluster with 17,648 nodes and
k = 4.3, and the malware only propagates in this largest
cluster. The BA network has 17,652 links among 17,653 nodes
(k = 2). The generated BA network is connected and thus is a
tree. The 2D-lattice is with 17,689 nodes and k = 4. Among
all these four topologies, the curves of both models overlap
with the simulation results in this special case. Therefore,
both models can achieve the best performance in the case of
β = 1. Although the AS graph and the ER random graph have
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Fig. 9. Malware propagation in real topology, ER random graph, BA network,
and 2D-lattice with β = 1 and δ = 0.1.
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Fig. 10. Malware propagation in a top-down hierarchical topology with
129,480 nodes, 266,005 edges, and δ = 0.

almost the same number of (connected) nodes and average
nodal degree, the malware takes only 6 time steps to enter
an equilibrium stage in the AS graph, whereas it needs about
9 time steps in the ER random graph. This shows that these
two topologies have different diameters and the AS graph is
more vulnerable to malware propagation than the ER random
graph. It is interesting to notice that although the dynamics of
malware spreading in different topologies are distinct, the final
sizes of infection are almost the same, i.e., n(t) ≈ 16, 000,
when t = 150. This reflects that for the case when β = 1 and
δ = 0.1, the final size of infection is not dependent on the
network structure, but on the total number of nodes.

Figure 10 demonstrates another special case when δ = 0,
which corresponds to the susceptible → infected (SI) model.
The malware spreads in a top-down hierarchical topology
generated by BRITE [26]. The top AS-level topology is from
NLANR on 2 January 2000 [31], with 6,474 ASes and 13,895
interconnections. The down router-level topology is generated
by BRITE router-level BA model, with 20 nodes per AS. The
constructed top-down hierarchical topology has 129,480 nodes
and 266,005 edges. The merit of the Markov model can also
be observed in this special case when δ = 0.
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Fig. 11. Relative entropies in 2D-lattice with 10,000 nodes, β = 0.1, and
δ = 0.1.

C. Test of Spatial Markov Assumption
To further examine the goodness of spatial Markov assump-

tion, we use a relative entropy (or Kullback-Leibler distance)
between two probability mass functions p(x, t) and q(x, t) as
defined in [32]:

D(p‖q) =
∑

x

p(x, t)log
p(x, t)

q(x, t)
. (23)

The relative entropy is a measure of the distance between two
distributions p(x, t) and q(x, t). If q(x, t) is “closer” to p(x, t),
D(p‖q) is smaller; and D(p‖q) = 0 if and only if p = q.

For our case, p(x, t) = P (XNi
(t) = xNi

(t)|Xi(t) = 0)
is the joint distribution of the status of node i’s neighbors
given node i is susceptible at time t. For the independent
model, q1(x, t) =

∏

j∈Ni
P (Xj(t) = xj(t)); for the Markov

model, q2(x, t) =
∏

j∈Ni
P (Xj(t) = xj(t)|Xi(t) = 0). We

obtain the relative entropies D(p‖q1) and D(p‖q2) through
simulation on a four-neighbor 2D-lattice, with 10,000 nodes,
β = 0.1, δ = 0.1, and 1,000 individual runs. As described
in Section IV-C, each node is represented by its coordinate
and the malware begins to spread from node (0, 0). Node i is
specified at (1, 1). Figure 11 shows how the relative entropies
D(p‖q1) and D(p‖q2) change with time. It is observed that the
relative entropies are initially close to 0, but increase with time.
D(p‖q2) is smaller than D(p‖q1) for all time t, suggesting that
the spatial Markov model is indeed a better approximation
than the spatial independent model. On the other hand, when
t > 60, D(p‖q2) > 0.5. This explains the performance gap
between the Markov model and the simulation observed in
Figures 8 and 10. Hence, a model that incorporates more
spatial dependence than the Markov model may result in a
smaller relative entropy.

VI. FINAL SIZE OF INFECTION

The final size of infection corresponds to the equilibrium
state of a malware network, which is the average num-
ber of infected nodes when time t approaches infinity, i.e.,
limt→+∞ n(t). The final size of infection characterizes the
potential damage due to malware propagation. If the final size
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Fig. 12. Performance comparisons in estimating the final size of infection.

of infection can be predicted at an early stage of malware
spreading, the potential damage can be assessed and preventive
actions can be taken accordingly. In this section, we compare
our proposed models with the simulation results and the other
models in estimating the final size of infection in homogeneous
and complex networks. Each simulation scenario has 100
individual runs and is averaged over the cases that the malware
survives. The final size of infection is sampled at time t =
2000.

Figure 12(a) shows a comparison of the Epidemiological
model, the AAWP model, the independent model, the Markov
model, and the simulation results on a connected ER random
graph, with 10,000 nodes, k = 10, and δ = 0.1. When
compared with the simulation results, the Epidemiological
model over-predicts the final size of infection when β ≥ 0.02,
whereas the AAWP model and the independent model slightly
over-predict it. The results of the Markov model and the
simulation overlap for 0.001 ≤ β ≤ 1. Therefore, the Markov
model is the most accurate one among all these models.

Figure 12(b) gives another comparison of the UCN model,
the independent model, the Markov model, and the simulation
results on a BA network, with 10,000 nodes, k = 4, and β =
0.1. The UCN model over-predicts the final size of infection,
whereas the independent model slightly over-predicts it. The
results of the Markov model and the simulation overlap for
0.001 ≤ δ ≤ 1. Therefore, both the independent model and
the Markov model are shown to be good estimators of the final
size of infection, and the Markov model is more accurate than
the independent model.

VII. CONCLUSIONS

In this paper, we have presented a spatial-temporal model to
study the dynamic spreading of malwares that employ different
scanning methods. Making use of this model, we have studied
the impact of the underlying topology on malware propagation.
We show that detailed topology information and spatial depen-
dence are key factors in modeling the spread of malwares. The

independent model incorporates detailed topology information
and thus outperforms the previous models. Our Markov model
incorporates both detailed topology information and simple
spatial dependence, and thus achieves a greater accuracy than
the independent model, especially when both the birth rate and
the average nodal degree are small. Moreover, when the graph
is dense, each node fluctuates independently about its mean
value and thus both models perform well. These results are
validated through analysis and extensive simulations on large
networks using real and synthesized topologies.

The class of models we have investigated are biased, i.e.,
with a reduced complexity. Hence, the performance of such
models is important. Relative entropy is used as a perfor-
mance measure and shows that a performance gap still exists
between the Markov model and the reality. Formulations are
needed to incorporate more spatial dependence into the model.
Furthermore, as both models are motivated by the spirit of
the mean-field approximation in machine learning, a formal
treatment of the mean-field approximation to include temporal
dependence will be studied in our future work. As part of
the ongoing work, we also plan to estimate the parameters
of malware propagation (e.g., birth rate and death rate) and
use our proposed models to study the countermeasures for
controlling the spread of malwares. Our modeling approach
may also help to understand a wide range of information
propagation behavior in Internet, such as BGP update streams
and file sharing in peer-to-peer applications.
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APPENDIX
Computation of Conditional Probability

To calculate the conditional probability P (Xj(t) =
1|Xi(t) = 0), we introduce a two-node joint probability
P (Xi(t) = 1, Xj(t) = 1). Thus,

P (Xj(t) = 1|Xi(t) = 0)

=
P (Xj(t) = 1) − P (Xi(t) = 1, Xj(t) = 1)

P (Xi(t) = 0)
. (24)

To simply the notation, we set Puv(t) = P (Xi(t + 1) =
1, Xj(t + 1) = 1|Xi(t) = u, Xj(t) = v), where u, v ∈
{0, 1}. The two-node joint probability can be obtained by the
following equations:

P (Xi(t + 1) = 1, Xj(t + 1) = 1)

=
X

u,v

[P (Xi(t) = u, Xj(t) = v)Puv(t)] , (25)

where the total probability theorem is used and

P11(t) = (1 − δi)(1 − δj), (26)

since given that both node i and node j are infected at time
t, they independently choose to stay in infected status;

P01(t) = (1 − δj)[1 − S′
i(t)], (27)

in that S′
i(t) = P (Xi(t + 1) = 0|Xi(t) = 0, Xj(t) = 1) and

thus
S

′
i(t) = (1 − βji)

Y

l∈Ni−{j}

[1 − βliP (Xl(t) = 1|Xi(t) = 0)],

where the spatial Markov assumption is used; similarly,

P10(t) = (1 − δi)[1 − S′
j(t)], (28)

in that
S

′
j(t) = (1 − βij)

Y

l∈Nj−{i}

[1 − βljP (Xl(t) = 1|Xj (t) = 0)];

P00(t) ≈ [1 − S′′
i (t)][1 − S′′

j (t)], (29)
where

S
′′
i (t) =

Y

l∈Ni−{j}

[1 − βliP (Xl(t) = 1|Xi(t) = 0)],

S
′′
j (t) =

Y

l∈Nj−{i}

[1 − βljP (Xl(t) = 1|Xj (t) = 0)].

Equation (29) uses an approximation to avoid the introduction
of a three-node joint probability P (Xi(t) = 0, Xj(t) =
0, Xl(t) = xl(t)) if nodes i, j, l construct a triangle.

Equation (25) is obtained by replacing Puv(t) with the
results from Equations (26) ∼ (29). Equations (17) and (25)
provide a recursive relationship between Xi(t+1), Xj(t+1)
and Xi(t), Xj(t) for j ∈ Ni. It is assumed that the status of
all nodes is independent at time 0.


