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Abstract

Internet worm infection continues to be one of top se-
curity threats and has been widely used by botnets to
recruit new bots. In this work, we attempt to quantify
the infection ability of individual hosts and reveal the
key characteristics of the underlying topology formed by
worm infection,i.e., the number of children and the gen-
eration of the worm infection family tree. Specifically,
we apply probabilistic modeling methods and a sequen-
tial growth model to analyze the infection tree of a wide
class of worms. Through both mathematical analysis
and simulation, we find that the number of children has
asymptotically a geometric distribution with parameter
0.5. As a result, on average half of infected hosts never
compromise any vulnerable host, over 98% of infected
hosts have no more than five children, and a small por-
tion of infected hosts have a large number of children.
We also discover that the generation follows closely a
Poisson distribution and the average path length of the
worm infection family tree increases approximately log-
arithmically with the total number of infected hosts.

1 Introduction
Internet worms are malicious software that can compro-
mise vulnerable hosts and use them to attack other vic-
tims, and have been one of top security threats since the
Code Red and Nimda worms in 2001. Botnets are zom-
bie networks controlled by attackers through Internet re-
lay chat (IRC) systems (e.g., GT Bot) or peer-to-peer
(P2P) systems (e.g., Storm) to execute coordinated at-
tacks and have become the number one threat to the Inter-
net in recent years. The main difference between worms
and botnets lies in that worms emphasize the procedures
of infecting targets and propagating among vulnerable
hosts, whereas botnets focus on the mechanisms of orga-
nizing the network of compromised computers and set-
ting out coordinated attacks. Most botnets, however,
still apply worm-scanning methods to recruit new bots
or collect network information [8, 10, 14, 17]. More-
over, although many P2P-based botnets use the existing
P2P networks to build a bootstrap procedure, Conficker
C forms a P2P botnet through scan-based peer discov-
ery [11, 3]. Specifically, Conficker C searches for new
peers by randomly scanning the entire Internet address

space. As a result, the way that Conficker C constructs a
P2P-based botnet is in principle the same as worm scan-
ning/infection. Therefore, characterizing the structureof
worm infection is important and imperative for defend-
ing against current and future epidemics such as Internet
worms and Conficker C like P2P-based botnets.

Modeling Internet worm infection has been focused
on themacro level. Most, if not all, mathematical mod-
els study the total number of infected hosts over time
[12, 24, 4, 15, 8]. The models of themicro level of worm
infection, however, have been investigated little. The
micro-level models can provide more insights into the in-
fection ability of individual compromised hosts and the
underlying topologies formed by worm infection. A key
micro-level information is “who infects whom” or the
worm infection family tree. When a host infects another
host, they form a “father-and-son” relationship, which
is represented by a directed edge in a graph formed by
worm infection. Hence, the procedure of worm propaga-
tion constructs a directed tree where patient zero is the
root and the infected hosts that do not compromise any
vulnerable host are leaves (see Fig. 1). To the best of
our knowledge, there is yet no mathematical model for
characterizing the structure of such a tree.

The goal of this work is to characterize the Internet
worm infection family tree, called the “worm tree” in
short. For such a tree, we are particularly interested in
two metrics:

• Number of children: For a randomly selected node
in the tree, how many children does it have? This
metric represents the infection ability of individual
hosts.

• Generation: For a randomly selected node in the
tree, which generation (or level) does it belong to?
This metric indicates the average path length of the
graph formed by worm infection.

These two metrics have important implications and ap-
plications for security analysis. First, the distributionof
the number of children can be used to answer questions
such as what is the probability that an infected host com-
promises more than 10 vulnerable hosts. Moreover, it
provides insights into the robustness of the Conficker C
like P2P-based botnets [1, 7]. Second, some schemes
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Figure 1: A worm tree.

have been proposed to trace worms back to their origins
through the cooperation between infected hosts [21], and
the distribution of the generation can provide the infor-
mation on the number of hosts required to cooperate.
Moreover, it sheds light on the delay or the effort for
a botmaster to deliver a command to all bots in a P2P-
based botnet like Conficker C.

To study these two metrics analytically, we apply
probabilistic modeling methods and derive the joint
probability distribution of the number of children and the
generation through a sequential growth model. From the
joint distribution, we analyze the marginal distributions
of the number of children and the generation. We also de-
velop closed-form approximations to both marginal dis-
tributions and the joint distribution. As a first attempt, we
analyze the worm tree formed by a wide class of worms
such as random-scanning worms [12], routable-scanning
worms [20, 24], importance-scanning worms [5], OPT-
STATIC worms [16], and SUBOPT-STATIC worms [16].
For these worms, a new victim is compromised by each
existing infected host with equal probability. We then
verify the analytical results through simulations.

Through both mathematical analysis and simulation,
we make several discoveries from this research as fol-
lows. If a worm uses a scanning method for which a new
victim is compromised by each existing infected host
with equal probability, the number of children is shown
to have asymptotically a geometric distribution with pa-
rameter 0.5. This means that on average half of infected
hosts never compromise any target and over 98% of in-
fected hosts have no more than five children. On the
other hand, this also indicates that a small portion of
hosts infect a large number of vulnerable hosts. More-
over, the generation is demonstrated to closely follow a
Poisson distribution with parameterHn − 1, wheren is
the number of nodes andHn is then-th harmonic num-
ber [6]. This means that the average path length of the
worm tree increases approximately logarithmically with
the number of nodes. To the best of our knowledge, this
is the first attempt in understanding and exploiting the
topology formed by worm infection quantitatively.

The remainder of this paper is structured as follows.

Section 2 presents our sequential growth model and as-
sumptions used in analyzing the worm tree. Section 3
gives our analysis on the worm tree. Section 4 uses sim-
ulations to verify the analytical results. Finally, Section
5 concludes this paper.

2 Worm Tree and Sequential Growth
Model

In this section, we provide the background on the worm
tree, and present the assumptions and the growth model.

An example of a worm tree is given in Fig. 1. Here,
patient zero is the root and belongs to generation 0. The
tail of an arrow is from the “father” or the infector,
whereas the head of an arrow points to the “son” or the
infectee. If a father belongs to generationi, then its chil-
dren lie in generationi+1. In a worm tree withn nodes,
we useLn(i, j) (0 ≤ i, j ≤ n− 1) to denote the number
of nodes that havei children and belong to generationj.
Note that

∑n−1
i=0

∑n−1
j=0 Ln(i, j) = n. We also useCn(i)

(i = 0, 1, 2, · · · , n − 1) to denote the number of nodes
that havei children andGn(j) (j = 0, 1, 2, · · · , n − 1)
to denote the number of nodes in generationj. More-
over,Ln(i, j), Cn(i), andGn(j) are random variables.

Thus, we definepn(i, j) = E[Ln(i,j)]
n

, representing the
joint distribution of the number of children and the gen-

eration. Similarly, we definecn(i) = E[Cn(i)]
n

to repre-
sent the marginal distribution of the number of children

andgn(j) = E[Gn(j)]
n

to represent the marginal distribu-

tion of the generation. Note thatcn(i) =
∑n−1

j=0 pn(i, j)

andgn(j) =
∑n−1

i=0 pn(i, j). Although we model worm
infection as a tree, different worm trees can show very
different structures. In the extended version of this paper
[18], we demonstrate that two extreme cases of worm
trees (i.e., bus and star topologies) can have very differ-
entcn(i) andgn(j).

To study the worm tree analytically, in this paper we
make several assumptions and considerations. First, to
simplify the model, we assume that infected hosts have
the same scanning rate. This assumption is removed in
Section 4.2, where we use simulations to study the effect
of the variation of scanning rates on the worm tree. Sec-
ond, we consider a wide class of worms for which a new
victim is compromised by each existing infected host
with equal probability. Such worms include random-
scanning worms, routable-scanning worms, importance-
scanning worms, OPT-STATIC worms, and SUBOPT-
STATIC worms. Random scanning selects targets in
the IPv4 address space randomly and has been the main
scanning method for both worms and botnets [12, 10];
routable scanning finds victims in the routable IPv4 ad-
dress space [20, 24]; and importance scanning probes
subnets according to the vulnerable-host distribution
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[5]. OPT-STATIC and SUBOPT-STATIC are optimal
and suboptimal scanning methods that are proposed in
[16] to minimize the number of worm scans required
to reach a predetermined fraction of vulnerable hosts.
Third, we consider the classic susceptible→ infected
(SI) model, ignoring the cases that an infected host can
be cleaned and becomes vulnerable again, or can be
patched and becomes invulnerable. The SI model as-
sumes that once infected, a host remains infected. Such a
simple model has been widely applied in studying worm
infection [12, 24, 16], and presents the worst case sce-
nario. Fourth, we assume that there is no re-infection.
That is, if an infected host is hit by a worm scan, this
host will not be further re-infected. As a result, every in-
fected host has one and only one father except for patient
zero, and the resulting graph formed by worm infection
is a tree. Fifth, we assume that the worm starts from one
infected host,i.e., patient zero or a hitlist size of 1. When
the hitlist size is larger than 1, the underlying infection
topology is a worm forest, instead of a worm tree. Our
analysis, however, can easily be extended to model the
worm forest. Finally, we assume that in our model, nodes
are added into the worm tree sequentially and no two
nodes are added at the same time. That is, no two vul-
nerable hosts are infected simultaneously. Rather than
attempting to characterize the dynamics of worm propa-
gation (e.g., the total number of infected hosts over time),
we make this assumption aim at capturing the main fea-
tures of the topology formed by worm infection (e.g., the
number of children and the generation) without sacrific-
ing much accuracy. Taking the Code Red v2 worm as
an example, during its early stage of propagation, there
are few infected hosts struggling to find other vulnerable
machines out of the IPv4 address space, hence very few
hosts get infected at the same time. On the other hand,
during its later fast spread period, the number of hosts
that get compromised simultaneously is trivial compared
with the number of existing infected hosts. In Section 4
where simulations are performed, we relax this assump-
tion.

Based on these considerations and assumptions, the
sequential growth model of a worm tree works as fol-
lows: We consider a fixed sequence of infected hosts
(i.e., nodes)v1, v2, · · · and inductively construct a ran-
dom worm tree(Tn)n≥1, where n is the number of
nodes andT1 has only patient zero. Infecting a new
host is equivalent to adding a new node into the existing
worm tree. Hence, givenTn−1, Tn is formed by adding
nodevn together with an edge directed from an existing
nodevf to vn. According to the assumption,vf is ran-
domly chosen among then − 1 nodes in the tree,i.e.,
Pr(f = k) = 1

n−1 , k = 1, 2, · · · , n − 1. Note that such
a sequential growth model and its variations have been
widely used in studying topology generators [2]. In this

paper, we apply this model to characterize worm infec-
tion.

3 Mathematical Analysis
In this section, we study the worm tree through math-
ematical analysis. Specifically, we first derive the joint
distribution of the number of children and the generation,
i.e., pn(i, j), by applying probabilistic methods. We then
usepn(i, j) to analyze two marginal distributions,i.e.,
cn(i) andgn(j), and obtain their closed-form approxi-
mations. Finally, we find a closed-form approximation
to pn(i, j).

3.1 Joint Distribution
For a worm tree with only patient zero (i.e., n = 1), since
L1(0, 0) = 1 with probability 1,p1(0, 0) = 1. Similarly,
for a worm tree withn = 2, it is evident thatL2(1, 0) =
L2(0, 1) = 1. Thus,p2(1, 0) = p2(0, 1) = 1

2 . We now
considerpn(i, j) (0 ≤ i, j ≤ n−1) whenn ≥ 3. Specif-
ically, we study two cases:

(1) pn(0, j), i.e., the proportion of the number of
leaves in generationj in Tn. Assume thatTn−1 is given,
and there areLn−1(0, j) leaves in generationj and to-
tally Gn−1(j−1) =

∑n−2
i=0 Ln−1(i, j − 1) nodes in gen-

erationj − 1. Note that we have extended the notation
so thatGn−1(−1) = Ln−1(i,−1) = 0, 0 ≤ i ≤ n − 2.
When a new nodevn is added,vn becomes a leaf ofTn.
If vn is connected to one of existing nodes in generation
j − 1, vn belongs to generationj; and the probability of
such an event isGn−1(j−1)

n−1 . Moreover, if a leaf in gen-
erationj in Tn−1 connects tovn, this node is no longer
a leaf and now has one child; and the probability of this
event isLn−1(0,j)

n−1 . Therefore, we can obtain the stochas-
tic recurrence ofLn(0, j):

Ln(0, j) =











Ln−1(0, j) + 1, w.p. Gn−1(j−1)
n−1

Ln−1(0, j) − 1, w.p. Ln−1(0,j)
n−1

Ln−1(0, j), otherwise.
(1)

GivenTn−1 (i.e., Ln−1(0, j) andGn−1(j−1)), the con-
ditional expected value ofLn(0, j) is [Ln−1(0, j) + 1] ·
Gn−1(j−1)

n−1 + [Ln−1(0, j) − 1] · Ln−1(0,j)
n−1 + Ln−1(0, j) ·

[

1 − Gn−1(j−1)+Ln−1(0,j)
n−1

]

, i.e.,

E[Ln(0, j)|Tn−1] = n−2
n−1Ln−1(0, j)+ 1

n−1Gn−1(j−1).
(2)

Applying E[Ln(0, j)] = E[E[Ln(0, j)|Tn−1]] (i.e., the
law of total expectation), we obtain

E[Ln(0, j)] = n−2
n−1E[Ln−1(0, j)]+ 1

n−1E[Gn−1(j−1)].
(3)

Using the definitionspn(0, j) = E[Ln(0,j)]
n

andgn−1(j−

1) = E[Gn−1(j−1)]
n−1 =

∑n−2
i=0 pn−1(i, j − 1), the above
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equation leads to

pn(0, j) = n−2
n

pn−1(0, j) + 1
n
gn−1(j − 1) (4)

= n−2
n

pn−1(0, j) + 1
n

∑n−2
i=0 pn−1(i, j − 1).

(5)

(2) pn(i, j), 1 ≤ i ≤ n − 1. GivenLn−1(i, j) and
Ln−1(i − 1, j) in Tn−1, we studyLn(i, j) in Tn. When
the new nodevn is added intoTn−1, vn is connected
to a node withi − 1 children and in generationj with
probability Ln−1(i−1,j)

n−1 , or is connected to a node withi

children and in generationj with probability Ln−1(i,j)
n−1 .

Thus, inTn,

Ln(i, j) =











Ln−1(i, j) + 1, w.p. Ln−1(i−1,j)
n−1

Ln−1(i, j) − 1, w.p. Ln−1(i,j)
n−1

Ln−1(i, j), otherwise.
(6)

This relationship leads to

E[Ln(i, j)|Tn−1] = n−2
n−1Ln−1(i, j)+

1
n−1Ln−1(i−1, j).

(7)
Therefore,

E[Ln(i, j)] = n−2
n−1E[Ln−1(i, j)]+

1
n−1E[Ln−1(i−1, j)].

(8)
That is,

pn(i, j) = n−2
n

pn−1(i, j) + 1
n
pn−1(i − 1, j). (9)

Summarizing the above two cases, we have the follow-
ing theorem:

Theorem 1 When n ≥ 3, the joint distribution of the
number of children and the generation in a worm tree Tn

follows

pn(i, j) =

{

n−2
n

pn−1(0, j) + 1
n
gn−1(j − 1), i = 0

n−2
n

pn−1(i, j) + 1
n
pn−1(i − 1, j), otherwise,

(10)
where 0 ≤ i, j ≤ n − 1.

Theorem 1 provides a way to calculatepn(i, j) recur-
sively fromp2(i, j).

3.2 Number of Children

We usepn(i, j) to derive the marginal distribution of the
number of children,i.e., cn(i). Similarly, we study two
cases:

(1) cn(0), i.e., the proportion of the number of
leaves in Tn. Since cn(0) =

∑n−1
j=0 pn(0, j) and

∑n−1
j=0 gn−1(j − 1) = 1, we obtain the recursive rela-

tionship ofcn(0) from Equation (4):

cn(0) = n−2
n

cn−1(0) + 1
n
. (11)

Moreover, note thatc2(0) = 1
2 . If we assume that

cn−1(0) = 1
2 , we can obtain by induction that

cn(0) = 1
2 . (12)

This indicates that no matter how many nodes are in the
worm tree, on average half of nodes are leaves,i.e., on
average 50% of infected hosts never compromise any tar-
get.

(2) cn(i), 1 ≤ i ≤ n − 1. From Equation (9) and
cn(i) =

∑n−1
j=0 pn(i, j), we find the recurrence ofcn(i)

as follows

cn(i) = n−2
n

cn−1(i) + 1
n
cn−1(i − 1). (13)

Summarizing the above two cases, we have the follow-
ing theorem on the distribution of the number of children:

Theorem 2 When n ≥ 3, the distribution of the number
of children in a worm tree Tn follows

cn(i) =

{

1
2 , i = 0
n−2

n
cn−1(i) + 1

n
cn−1(i − 1), 1 ≤ i ≤ n − 1.

(14)

From Theorem 2, we can derive the statistical proper-
ties of the number of children as follows.

Corollary 1 When n ≥ 1, the expectation and the vari-
ance of the number of children are

En[C] =
∑n−1

i=0 i · cn(i) = n−1
n

(15)

Varn[C] =
∑n−1

i=0 (i − En[C])
2
· cn(i) = 2−n−1

n2 − 2Hn

n
,

(16)
where Hn =

∑n

i=1
1
i

is the n-th harmonic number [6].

The proof of Corollary 1 is given in the extended ver-
sion of this paper [18]. One intuitive way to derive En[C]
is that in worm treeTn, there aren − 1 directed edges
andn nodes. Thus, the average number of edges (i.e, the
average number of children) of a node isn−1

n
. More-

over, sinceHn is O(1 + lnn), lim
n→∞

En[C] = 1, and

lim
n→∞

Varn[C] = 2.

Theorem 2 also leads to a simple closed-form expres-
sion of the distribution of the number of children whenn
is very large, as shown in the following corollary.

Corollary 2 When n → ∞, the number of children has
a geometric distribution with parameter 1

2 , i.e.,

c(i) = lim
n→∞

cn(i) =
(1

2

)i+1

, i = 0, 1, 2, · · · . (17)

The proof of Corollary 2 is given in [18]. Corollary 2
indicates that whenn is very large,cn(i) decreases ap-
proximately exponentially with a decay constant ofln 2
as the number of children increases. We further study
when bothn andi are finite and large, howcn(i) varies
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Figure 2: Mathematical analysis of the worm infection structure.

with n, i.e., how the tail of the distribution of the number
of children changes withn. First, note thatc3(0) = 1

2 ,
c3(1) = 1

3 , and c3(2) = 1
6 . Thus, from Equation

(13), we can prove by induction thatcn(i) (n ≥ 3) is
a decreasing function ofi, i.e., cn(i) < cn(i − 1), for
1 ≤ i ≤ n − 1. Next, putting this inequality into Equa-
tion (13), we havecn(i) > n−1

n
cn−1(i). Hence, when

n is very large,n−1
n

≈ 1, andcn(i) > cn−1(i), which
indicates that the tail ofcn(i) increases withn. Fig. 2(a)
verifies this result, showingcn(i) obtained from Theo-
rem 2 whenn = 1000, 2000, 5000, and20000, as well
as the geometric distribution with parameter 0.5 obtained
from Corollary 2. Note that the y-axis uses log-scale. It
can be seen that whenn increases from1000 to 20000,
the tail ofcn(i) also increases to approach the tail of the
geometric distribution. Moreover, it is shown that the ge-
ometric distribution well approximates the distribution of
the number of children whenn is large.

3.3 Generation

Next, we derive the generation distribution (i.e., gn(j))
in a similar manner to the case ofcn(i). Using Theorem
1 andgn(j) =

∑n−1
i=0 pn(i, j), we obtain the following

theorem:

Theorem 3 When n ≥ 3, the distribution of the genera-
tion in a worm tree Tn follows

gn(j) = n−1
n

gn−1(j) + 1
n
gn−1(j − 1), 0 ≤ j ≤ n − 1,

(18)
where gn−1(−1) = 0.

Theorem 3 gives a method to calculate the distribution
of the generation recursively. Moreover, from Theorem
3, we can derive the statistical properties of the genera-
tion distribution in the following corollary.

Corollary 3 When n ≥ 1, the expectation and the vari-

ance of the generation are

En[G] =
∑n−1

j=0 j · gn(j) = Hn − 1. (19)

Varn[G] =
∑n−1

j=0 (j − En[G])2 · gn(j) = Hn − Hn,2,
(20)

where Hn =
∑n

i=1
1
i

and Hn,2 =
∑n

i=1
1
i2

.

The proof of Corollary 3 is given in [18]. From Corol-
lary 3, we have some interesting observations. SinceHn

is O(1 + lnn) andH∞,2 = ζ(2) = π2

6 ≈ 1.645 is the
Riemann zeta function of 2 [13], both En[G] and Varn[G]
are O(1 + lnn). This indicates that the average path
length of the worm tree (i.e., En[G]) increases approxi-
mately logarithmically withn. Moreover, whenn → ∞,
lim

n→∞
En[G]− lnn = γ − 1, and lim

n→∞
Varn[G]− lnn =

γ− ζ(2), whereγ ≈ 0.577 is the Euler-Mascheroni con-
stant [9]. Therefore, whenn is large, En[G] ≈ Varn[G].
Furthermore, we can use Theorem 3 to obtain a closed-
form approximation togn(j) as follows.

Corollary 4 When n is very large, the generation distri-
bution gn(j) can be approximated by a Poisson distribu-
tion with parameter λn = En[G] = Hn − 1. That is,

gn(j) ≈
λj

n

j! e−λn , 0 ≤ j ≤ n − 1. (21)

The proof of Corollary 4 is given in [18]. Fig. 2(b) veri-
fies Corollary 4, showinggn(j) obtained from Theorem
3 whenn = 1000, 2000, 5000, and20000, as well as
the Poisson distribution with parameter En[G]. It can be
seen that whenn is large, the Poisson distribution fits the
generation distribution closely.

3.4 Approximation to the Joint Distribu-
tion

Finally, we derive a closed-form approximation to the
joint distributionpn(i, j). From Equation (9), we can see
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Figure 3: Simulating the infection structure of the Code Redv2 worm (n0 = 360, 000).

that whenn → ∞, pn(i, j) = pn−1(i, j), which yields

pn(i, j) = 1
2pn(i − 1, j). (22)

Hence, we can obtain

pn(i, j) =
(

1
2

)i
pn(0, j) ≈

(

1
2

)i+1
gn(j). (23)

Since whenn is very large,gn(j) follows closely the
Poisson distribution as in Corollary 4,

pn(i, j) ≈
(

1
2

)i+1
·

λj
n

j! e−λn , 0 ≤ i, j ≤ n − 1, (24)

whereλn = Hn − 1. The above derivation also shows
that whenn is very large, the number of children and the
generation are almost independent random variables.

Fig. 2(c) shows the parity plot of the approximation
to the joint distribution whenn = 2000. In the figure,
the x-axis is the actualpn(i, j) obtained from Theorem
1, and the y-axis is the approximatedpn(i, j) from Equa-
tion (24), where0 ≤ i, j ≤ 30. It can be seen that most
points are on or near the diagonal line, indicating that the
approximation to the joint distribution is reasonable.

4 Simulations and Verification

In this section, we study the worm infection structure
through simulations. As far as we know, there is no pub-
licly available data to show the real worm tree and ver-
ify our analytical results. Moreover, real experiments in
a controlled environment are impractical for this study,
since the closed-form approximations are derived based
on the assumption that the number of nodes is very large.
Therefore, we apply simulations. Specifically, we first
simulate the infection structure of the Code Red v2 worm
and then study the effects of important parameters on the
worm tree.

4.1 Code Red v2 Worm Verification
We simulate the propagation of the Code Red v2 worm
by using and extending the simulator in [22]. Note that

the simulator is not based on any mathematical model.
Instead, the simulator considers a discrete-time system
and mimics the random-scanning behavior of infected
hosts in real world scenarios through a random num-
ber generator. Moreover, the parameter setting is based
on the Code Red v2 worm’s characteristics. For exam-
ple, the vulnerable population isn0 = 360, 000, and a
newly infected host is assigned with a scanning rate of
358 scans/min. Detailed information about how the pa-
rameters are chosen can be found in Section VII of [23].
We then extend the simulator to track the worm infec-
tion structure by adding the information of the number of
children and the generation to each infected host. More-
over, we set the discrete time unit to 20 seconds and start
our simulation at time tick 0 with patient zero. Note that
we remove the assumption used in the sequential growth
model that no two hosts are compromised at the same
time. That is, multiple hosts can be compromised at one
time tick. Moreover, all new victims of the current time
tick start scanning at the next time tick. The simulation
results (mean± standard deviation) are obtained from
100 independent runs with different seeds and are pre-
sented in Fig. 3.

Fig. 3(a) shows the distribution of the number of
children, comparing the simulation results ofcn(i) for
n = n0/4, n0, and4n0 with the geometric distribution
obtained from Corollary 2. Note that the y-axis uses the
log-scale. The vertical dotted line represents the stan-
dard deviation that goes into the negative territory. It can
be seen that the distribution of the number of children
can be well approximated by the geometric distribution
with parameter 0.5. This implies thatcn(i) decreases ap-
proximately exponentially with a decay constant ofln 2.
Specifically, in all three cases, on average 50.0% of the
infected hosts do not have children, about 98.4% of them
have no more than five children, and 0.1% of them have
no less than ten children. We also calculate the expecta-
tion and the variance of the number of children from the
simulation and find that they are identical to the analyti-
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Figure 4: Effects of the scanning rate, the scanning rate standard deviation, and the hitlist size oncn(i) andgn(j)
(n0 = 360, 000).

cal results obtained from Corollary 1. Fig. 3(b) demon-
strates the generation distribution, comparing the simu-
lation results ofgn(j) for n = n0/4, n0, and4n0 with
the Poisson distributions with parameter En[G] = Hn−1
obtained from Corollary 4. It can be seen that the simula-
tion results ofgn(j) closely follow the Poisson distribu-
tions for all three cases. Hence, simulation results verify
that the average path length of the worm tree increases
approximately logarithmically with the total number of
infected hosts. Moreover, we also compute the expec-
tation and the variance of the generation in simulations
and verify the analytical results in Corollary 3. Fig. 3(c)
compares the measured joint distribution from simula-
tions with the approximated joint distribution from Equa-
tion (24) by using the parity plot. It can be seen that most
points are on or near the diagonal line, indicating that the
approximation works well.

4.2 Effects of Worm Parameters
Next, we extend our simulator to examine the effects of
three important parameters of worm propagation on the
worm tree: the scanning rate, the scanning rate standard
deviation, and the hitlist size. When a parameter is stud-
ied and varied, we set other parameters to the parame-
ters of the Code Red v2 worm as used in Section 4.1.
The simulation results are obtained from 100 indepen-

dent simulation runs and are shown in Fig. 4.

Fig.s 4(a) and (b) show the effect of varying the scan-
ning rates (scans/min) from 158 to 558 on the distri-
butions of the number of children and the generation.
Here, the scanning rate is set to a fixed value for every
infected host,i.e., the scanning rate standard deviation is
0. The figures also plot the geometric distribution with
parameter 0.5 and the Poisson distribution with parame-
terHn0

−1 for reference. It can be seen that the scanning
rate does not affect the worm tree structure.

Fig.s 4(c) and (d) demonstrate the effect of the vari-
ation of the scanning rates among different hosts (i.e.,
σ). In our simulation, a newly infected host is assigned
with a scanning rate (scans/min) from a normal distribu-
tion N(358, σ2). The figures show the simulation results
whenσ = 0, 100, and200. It can be seen that while the
scanning rate standard derivationσ has no effect on the
generation distribution, it does affect the distribution of
the number of children. Specifically, whenσ increases,
the tail of cn(i) moves upward from the geometric dis-
tribution with parameter 0.5. This is because whenσ
becomes larger, the variation of the scanning rate among
infected hosts is greater. That is, there are more hosts
with high scanning rates and also more hosts with low
scanning rates. As a result, those hosts with high scan-
ning rates tend to infect a large number of hosts, making

7



the tail of cn(i) move upward. However, it is also ob-
served that whenσ is not very large (the case for real
worms), the geometric distribution with parameter 0.5 is
still a good approximation.

In Fig.s 4(e) and (f), we show the effect of the hitlist
size on the worm tree. As pointed out in Section 2, when
the hitlist size is greater than 1, the underlying infection
topology is a worm forest with the number of trees equal
to the hitlist size. Moreover, in a worm forest, it is intu-
itive that each tree is a smaller version of the single worm
tree of hitlist size 1 and has fewer nodes. Hence, it is not
surprising to see that in Fig. 4(f), the generation dis-
tribution moves leftward when the hitlist size increases.
However, the generation distribution can still be well ap-
proximated by the Poisson distribution with parameter
Hnh

− 1, wherenh is the average number of nodes in a
tree. Moreover, since in each tree the distribution of the
number of children can be approximated by the geomet-
ric distribution with parameter 0.5, in the worm forest
cn(i) still follows closely the same distribution.

5 Conclusions

In this paper, we attempt to capture the key character-
istics of the Internet worm infection family tree. We
have analyzed the infection tree formed by a wide class
of worms such as random-scanning worms, routable-
scanning worms, importance-scanning worms, OPT-
STATIC worms, and SUBOPT-STATIC worms. Through
both mathematical analysis and simulation, we have
shown that the number of children asymptotically has a
geometric distribution with parameter 0.5; and the gener-
ation closely follows a Poisson distribution with param-
eter En[G] (i.e., Hn − 1).

As part of our ongoing work, we plan to relax our as-
sumptions to include more worm dynamics and apply our
observations to botnets. For example, we are studying
the infection structure of localized scanning [18], and ef-
fect of user defenses and re-infection on the worm tree
[19]. Moreover, based on our observations, we are de-
veloping methods for detecting bots and studying poten-
tial countermeasures for a botnet (e.g., Conficker C) that
uses scan-based peer discovery to form a P2P-based bot-
net [18].
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