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Abstract space. As a result, the way that Conficker C constructs a

) ) ) P2P-based botnet is in principle the same as worm scan-
Internet worm infection continues to be one of top Se-pinq/infection. Therefore, characterizing the structire
curity threats and has been widely used by botnets Qo infection is important and imperative for defend-

recruit new bots. In this work, we attempt to quantify jnq 4gainst current and future epidemics such as Internet
the infection ability of individual hosts and reveal the |, orms and Conficker C like P2P-based botnets.

key characteristics of the underlying topology formed by - \15deling Internet worm infection has been focused
worm infection,i.e., the number of children and the gen- 4, themacro level. Most. if not all. mathematical mod-
eration of the worm infection family tree. Specifically, ¢|5 siudy the total number of infected hosts over time
we apply probabilistic modeling methods and a sequenry» 24, 4, 15, 8]. The models of theicro level of worm

tial growth model to analyze the infection tree of a wide jnfection, however, have been investigated little. The

class of worms. Through both mathematical analysisycro-jevel models can provide more insights into the in-
and simulation, we find that the number of children hastec(ion apility of individual compromised hosts and the
asymptotically a geometric distribution with parameterunde”ying topologies formed by worm infection. A key
0.5. As aresult, on average half of infected hosts neve,icro-level information is “who infects whom” or the

compromise any vulnerable host, over 98% of infectedyqorm infection family tree. When a host infects another

hosts h_ave no more than five children, and a smr_:tll POThost, they form a “father-and-son” relationship, which

tion of mfe_cted hosts have a Iarge_ number of children,q represented by a directed edge in a graph formed by
We also discover that the generation follows closely ayqrm infection. Hence, the procedure of worm propaga-
Poisson distribution and the average path length of thgiqn constructs a directed tree where patient zero is the
worm infection family tree increases approximately 109- .54t and the infected hosts that do not compromise any
arithmically with the total number of infected hosts. vulnerable host are leaves (see Fig. 1). To the best of
our knowledge, there is yet no mathematical model for

1 Introduction o
o characterizing the structure of such a tree.
Internet worms are malicious software that can compro- The goal of this work is to characterize the Internet

mise vulnerable hosts and use them to attack other ViGyorm infection family tree, called the “worm tree” in
tims, and have been one of top security threats since thenort. For such a tree, we are particularly interested in
Code Red and Nimda worms in 2001. Botnets are zomyyo metrics:

bie networks controlled by attackers through Internet re-

lay chat (IRC) systemse@., GT Bot) or peer-to-peer e Number of children: For a randomly selected node
(PZP) Systemse(g_, Storm) to execute coordinated at- in the tree, how many children does it have? This
tacks and have become the number one threat to the Inter- ~ Metric represents the infection ability of individual
net in recent years. The main difference between worms ~ hosts.

and botnets lies in that worms emphasize the procedures
of infecting targets and propagating among vulnerable
hosts, whereas botnets focus on the mechanisms of orga-
nizing the network of compromised computers and set-
ting out coordinated attacks. Most botnets, however,
still apply worm-scanning methods to recruit new bots These two metrics have importantimplications and ap-
or collect network information [8, 10, 14, 17]. More- plications for security analysis. First, the distributioin
over, although many P2P-based botnets use the existintge number of children can be used to answer questions
P2P networks to build a bootstrap procedure, Confickesuch as what is the probability that an infected host com-
C forms a P2P botnet through scan-based peer discopromises more than 10 vulnerable hosts. Moreover, it
ery [11, 3]. Specifically, Conficker C searches for newprovides insights into the robustness of the Conficker C
peers by randomly scanning the entire Internet addresike P2P-based botnets [1, 7]. Second, some schemes

e Generation: For a randomly selected node in the
tree, which generation (or level) does it belong to?
This metric indicates the average path length of the
graph formed by worm infection.



Generation 3 Section 2 presents our sequential growth model and as-
sumptions used in analyzing the worm tree. Section 3
b 3 . gives our analysis on the worm tree. Section 4 uses sim-

[ ] ., @, Generation2

& !‘?‘\T ~ g,f"}“‘ ulations to verify the analytical results. Finally, Seatio
\; { g 5 concludes this paper.
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_ In this section, we provide the background on the worm
Figure 1: Aworm tree. tree, and present the assumptions and the growth model.

.. Anexample of a worm tree is given in Fig. 1. Here,
have been proposed to trace worms back to their origing atient zero is the root and belongs to generation 0. The
through the cooperation between infected hosts [21], anehi| of an arrow is from the “father” or the infector,

the distribution of the generation can provide the infor-\\hareas the head of an arrow points to the “son” or the
mation on the number of hosts required to cooperateitectee. If a father belongs to generatiothen its chil-

Moreover, it sheds light on the delay or the effort for yrap jig in generation+ 1. In a worm tree with: nodes,
a botmaster to deliver a command to all bots in a P2Py,q useL, (i, 7) (0 < i,j < n — 1) to denote the number

based botnet like Conficker C. of nodes that havéechildren and belong to generatign
To study these two metrics analytically, we apply Note thatZ?:’Ol Z?;()l Ln(i,7) = n. We also us&,, ()
probabilistic modeling methods and derive the joint(; — 0,1,2,... n'— 1) to denote the number of nodes

probabil_ity distribution of the n_umberof children and the that havei children andG,,(j) (j = 0,1,2,---,n — 1)
generation through a sequential growth model. From thgo denote the number of nodes in generatjonMore-
joint distribution, we analyze the margingl distributions over, L,, (i, j), C,.(i), andG,(j) are random variables.
of}he nlumb((jerfof children gndthe genet:aur:)n. Wg aIT%.de'Thus, we defing, (i, j) = E[L,;(i,j)]’ representing the
velop closed-form approximations to both margina IS'joint distribution of the number of children and the gen-
tributions and the joint distribution. As a first attempt, we i . i ) ElC,.(i)]

analyze the worm tree formed by a wide class of worme€ration. Similarly, we define,, (i) = === torepre-
such as random-scanning worms [12] routable-scanninaent the marginal distribution of the number of children

worms [20, 24], importance-scanning worms [5], OPT-andgy (j) = M to represent the marginal distribu-

STATIC worms [16], and SUBOPT-STATIC worms [16]. tion of the generation. Note that (i) = Z;:Ol (i, 7)

Fo_r t_hesc_e worms, a new_victim is comprqmised by eacr‘andgn () = Z?;OI pn(i, 7). Although we model worm
existing infected host with equal probability. We then jnfection as a tree, different worm trees can show very
verify the analytical results through simulations. different structures. In the extended version of this paper
Through both mathematical analysis and simulation[18], we demonstrate that two extreme cases of worm
we make several discoveries from this research as foltrees {.e., bus and star topologies) can have very differ-
lows. If a worm uses a scanning method for which a newentc,, (i) andg,, (j).
victim is compromised by each existing infected host To study the worm tree analytically, in this paper we
with equal probability, the number of children is shown make several assumptions and considerations. First, to
to have asymptotically a geometric distribution with pa- simplify the model, we assume that infected hosts have
rameter 0.5. This means that on average half of infecteghe same scanning rate. This assumption is removed in
hosts never compromise any target and over 98% of inSection 4.2, where we use simulations to study the effect
fected hosts have no more than five children. On thesf the variation of scanning rates on the worm tree. Sec-
other hand, this also indicates that a small portion ofond, we consider a wide class of worms for which a new
hosts infect a large number of vulnerable hosts. Morevictim is compromised by each existing infected host
over, the generation is demonstrated to closely follow awith equal probability. Such worms include random-
Poisson distribution with parametéf, — 1, wheren is  scanning worms, routable-scanning worms, importance-
the number of nodes anfd,, is then-th harmonic num-  scanning worms, OPT-STATIC worms, and SUBOPT-
ber [6]. This means that the average path length of th&TATIC worms. Random scanning selects targets in
worm tree increases approximately logarithmically with the 1Pv4 address space randomly and has been the main
the number of nodes. To the best of our knowledge, thiscanning method for both worms and botnets [12, 10];
is the first attempt in understanding and exploiting theroutable scanning finds victims in the routable IPv4 ad-
topology formed by worm infection quantitatively. dress space [20, 24]; and importance scanning probes
The remainder of this paper is structured as follows.subnets according to the vulnerable-host distribution



[5]. OPT-STATIC and SUBOPT-STATIC are optimal paper, we apply this model to characterize worm infec-
and suboptimal scanning methods that are proposed ition.
[16] to minimize the number of worm scans requwed3 Mathematical Analysis

to reach a predetermined fraction of vulnerable hosts. ) ’
Third, we consider the classic susceptible infected " this section, we study the worm tree through math-

(SI) model, ignoring the cases that an infected host ca§matical analysis. Specifically, we first derive the joint
be cleaned and becomes vulnerable again, or can gistribution of the number of children and the generation,
patched and becomes invulnerable. The SI model aé--'e"pn(lzvj)’ by applying probabilistic methods. We then
sumes that once infected, a host remains infected. Suchlé?e,p"(ld) to analyze two marginal distributionse.,
simple model has been widely applied in studying worm¢» (i) @ndgx(j), and obtain their closed-form approxi-
infection [12, 24, 16], and presents the worst case sceMations. Finally, we find a closed-form approximation
nario. Fourth, we assume that there is no re-infectiont©?n (% J)-

That is, if an infected host is hit by a worm scan, this3 1 jgint Distribution

host will not be further re-infected. As a result, every in- For aworm tree with only patient zerod, n = 1), since
fected host has one and only one father except for patieril(O 0) = 1 with probability 1,p: (0, 0) - 1 Sirr;ilarly
zero, and the resulting graph formed by worm infection]cor a7worm tree withs — 2. it is’ evid’ent thatl»(1,0) :’
is a tree. Fifth, we assume that the worm starts from ontiz(o 1) = 1. Thus,ps(1 (’)) — po(0,1) = L Wé now
infected hosti.e., patient zero or a hitlist size of 1. When cons}dem (i' )0 < ; j’< n—1) wﬁenn >23 Specif-
the hitlist size is larger than 1, the underlying infection ically, we gtu7dy two_caiseg: -

topology is a worm forest, instead of a worm tree. Our (1) pu(0, /), i-e, the proportion of the number of

analysis, however, can easily be extended to model th?eaves in generatiofin 7,,. Assume thatf, , is given
n- n— H

worm forest.. Finally, we assume thatin our model, nodes, | 4 e ard.,,_1(0, j) leaves in generatiog and to-
are added into the worm tree sequentially and no twqg ) n—2 . .
. . tally G,,—1(j—1) = >°,"y Ln-1(i,j — 1) nodesin gen-
nodes are added at the same time. That is, no two vul-""2 "~ ™" b= .
. . eration; — 1. Note that we have extended the notation
nerable hosts are infected simultaneously. Rather than . .
. - . so thatG,,—1(—1) = L,—1(i,—1) = 0,0 < i < n — 2.
attempting to characterize the dynamics of worm propas :
. . - When a new node,, is addedyp,, becomes a leaf df),.
gation €.g., the total number of infected hosts over time), . o . .
. : . . . If v, is connected to one of existing nodes in generation
we make this assumption aim at capturing the main fea-.

tures of the topology formed by worm infectioad., the J—Lon beIongsntg%e_rl()eratlcm and th_e probaplhty of
number of children and the generation) without sacrific-SUCh an event is=214—. Moreover, if a leaf in gen-

ing much accuracy. Taking the Code Red v2 worm as-rationj in 7;,_, connects tay,, this node is no longer
an example, during its early stage of propagation, therg '€af and now has one child; and the probability of this
are few infected hosts struggling to find other vulnerable€Vent ist=-23J). Therefore, we can obtain the stochas-
machines out of the IPv4 address space, hence very feflf recurrence of.., (0, j):

hosts get infected at the same time. On the other hand,

. Gno1(j—1
during its later fast spread period, the number of hosts Ly1(0,7) +1, w.p. %
that get compromised simultaneously is trivial compared L, (0,7) = L, 1(0,7) —1, w.p. L"%_(fvj)
with the_numb_er of existing infected hosts. In.Sectlon 4 Ln_1(0,7), otherwise
where simulations are performed, we relax this assump- (1)
tion. GivenT,,_; (i.e, L,,_1(0,7) andG,,_,(j — 1)), the con-

Based on these considerations and assumptions, ththtional expected value ak,, (0, j) iS [L,—1(0,5) + 1] -
sequential growth model of a worm tree works as foI-G"%(Jf” 4 [Ln1(0,5) —1] - L";%(fvj) + Lou_1(0,5) -
lows: We consider a fixed sequence of infected hosts[1 . Gnoa (=D +Ln-1(0,5)

(i.e., nodes)vy, vg, - - - and inductively construct a ran- n—1

dom worm tree(T,),>1, wheren is the number of ) - _ L )
nodes andl; has only patient zero. Infecting a new E[Ln(0,))Tn-1] = 3= Ln-1(0,)) +55Gn-1(j—1).
host is equivalent to adding a new node into the existing . ) _ . (2)
worm tree. Hence, givei, 1, T,, is formed by adding ~PPIying E[Ln(0,4)] = E[E[Ln(0,5)|Tn-]] (i.e, the
nodeu,, together with an edge directed from an existing /2w ©f total expectation), we obtain

nodev; to v,. According to the assumptiony is ran-
domly chosen among the — 1 nodes in the tred,e.,
Pr(f =k) = -4,k =1,2,--- ,n — 1. Note that such

a sequential growth model and its variations have bee
widely used in studying topology generators [2]. In this 1) = EGnaG-n) _ Z;:OQ pn-1(i,7 — 1), the above

n—1

,1.e,

E[L(0,)] = 2=2E[Ln-1(0, )] + ;55 E[Ga-1( — 1)].

3)
sing the definitions;, (0, j) = ElLa©4)) angg, (-

n



equation leads to

nTﬁpn—l(Ovj) + %gn—l(] - 1) (4)
2=2p1(0,5) + 2 S paa (6,5 — 1),
(5)

(2) pu(iyj), 1 <4 < n-—1. GivenL,_1(¢,j) and
L,1(i—1,7)inT,_1, we studyL, (i, j) in T,,. When
the new nodev,, is added intol,,_1, v, iS connected
to a node withi — 1 children and in generatiop with
probabilityw, or is connected to a node with
children and in generatiof with probabilityL"%_(f’j).
Thus, inT;,,

Pn(0, )

Loo1(iyj) +1, w.p. LootGLd)

n—1
La(isd) = § Luai.g) =1, wip. £
Ln_1(i,7), otherwise

(6)

This relationship leads to

E[Ln(za .7)|Tn—l] = Z_:?Ln—l (Za ])+ﬁLn—l (l_l,j)

Therefore, 7)
E[Ln(i,§)] = 2=2E[Ln—1(, j) |+ 725 E[Ln-1(i—1,)].
. (8)
Thatis,
Palisd) = 22010, 4) + +pa-1(i—1,5).  (9)

1

Moreover, note that,(0) = 5. If we assume that

cn—1(0) = %, we can obtain by induction that
cn(0) = 3.

This indicates that no matter how many nodes are in the
worm tree, on average half of nodes are leaves,on
average 50% of infected hosts never compromise any tar-
get.

(2) cn(i), 1 < i < n — 1. From Equation (9) and
cn(i) = Z?;Ol pn(i, ), we find the recurrence @f, (i)
as follows

Cn(z) nTizcn—l(i) + %Cn—l(i - 1) (13)

Summarizing the above two cases, we have the follow-
ing theorem on the distribution of the number of children:

(12)

Theorem 2 When n > 3, the distribution of the number
of childrenin a wormtree T, follows

Cn(l) = {

From Theorem 2, we can derive the statistical proper-
ties of the number of children as follows.

-

i=0
1<i<n-—1.
(14)

2
2, (i) + e (i — 1),

Corollary 1 When n > 1, the expectation and the vari-
ance of the number of children are

Summarizing the above two cases, we have the follow-

ing theorem:

Theorem 1 When n > 3, the joint distribution of the
number of children and the generationin awormtree 7,
follows

Pu(i, J) :{

where0 <1, <n—1.

nTﬁpn—l(Ovj) + %gn—l(] - 1)1 1=0
nTﬂpnfl(iaj) =+ %pnfl(l - 17j)7 Other\/\/i%,
(10)

Theorem 1 provides a way to calculatg(i, j) recur-
sively frompa (i, j).

3.2 Number of Children

We usep,, (i, j) to derive the marginal distribution of the
number of childreni.e, ¢, (7). Similarly, we study two
cases:

(1) ¢n(0), i.e, the proportion of the number of
leaves inT,. Since ¢, (0) >0y pa(0,4) and
Z;’:—Ol gn-1(j — 1) = 1, we obtain the recursive rela-
tionship ofc,, (0) from Equation (4):

cn(0) = %cn_l(O) + %

(11)

EnC] = Y10y i - enli) = 22 (15)
Var, [C] = 150 (i = En[C))* - a (i) = 225t - 2,
(16)

where H,, = 7" | 1 isthe n-th harmonic number [6].

The proof of Corollary 1 is given in the extended ver-
sion of this paper[18]. One intuitive way to derivg [E’]
is that in worm tre€T,,, there aren — 1 directed edges
andn nodes. Thus, the average number of edgesthie
average number of children) of a nodeﬁ%i. More-
over, sinceH,, is O(1 + lnn), nlingo E.[C] = 1, and
lim Var, [C] =2.
! Toﬁeorem 2 also leads to a simple closed-form expres-
sion of the distribution of the number of children when
is very large, as shown in the following corollary.

Corollary 2 When n — oo, the number of children has

a geometric distribution with parameter % ie,

NG

(5) L i=0,1,2,--. (17)
The proof of Corollary 2 is given in [18]. Corollary 2

indicates that when is very large,c, (i) decreases ap-

proximately exponentially with a decay constantof

as the number of children increases. We further study

when bothn andi are finite and large, how, (i) varies

c(i) = lim ¢, (i) =

n—oo
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Figure 2: Mathematical analysis of the worm infection stinve.

with n, i.e., how the tail of the distribution of the number ance of the generation are

of children changes with. First, note that;(0) = 3, . ,

c3(1) = 4, andes(2) = +. Thus, from Equation E Gl =220 7 9n(j) = Hn— 1. (19)
(13), we can prove by induction that, (i) (n > 3) is 1 ) '

a decreasing function of i.e, ¢, (i) < cn(i — 1), for ~ VAW[Gl =370 (1 = Eu[G])" - gn(j) = Hpn — Hy.2,
1 < i < n— 1. Next, putting this inequality into Equa- (20)
tion (13), we haver, (i) > “=1¢,_(i). Hence, when where i, = 33", yand Hy» = 321" 5.

n is very large,”~1 ~ 1, andc, (i) > cn—1(i), which
indicates that the tail of,, () increases with. Fig. 2(a)
verifies this result, showing, (i) obtained from Theo-
rem 2 whenn = 1000, 2000, 5000, and20000, as well
as the geometric distribution with parameter 0.5 obtaine
from Corollary 2. Note that the y-axis uses log-scale. It
can be seen that whenincreases from 000 to 20000, . .

. . . : mately logarithmically withn. Moreover, whem — oo,
the tail of,,(7) also increases to approach the tail of the .. B 0 d lim Var,[G] — Inn —
geometric distribution. Moreover, it is shown that the ge-nhfgo Bp[G] —Inn =y —1,an i nl =
ometric distribution well approximates the distributidn o ¥ — ¢(2), wherey ~ 0.577 is the Euler-Mascheroni con-

the number of children whenis large. stant [9]. Therefore, when is large, E[G] ~ Var,[G].
Furthermore, we can use Theorem 3 to obtain a closed-

form approximation tgy,,(7) as follows.

The proof of Corollary 3 is given in [18]. From Corol-
lary 3, we have some interesting observations. Skige
isO(1 +Inn) andHe 2 = ((2) = = ~ 1.645 is the
é?iemann zeta function of 2 [13], both,KE~] and Var, [G]
are O(1 + Inn). This indicates that the average path
length of the worm treei ., E,,[G]) increases approxi-

3.3 Generation
Corollary 4 When n isvery large, the generation distri-

Next, we derive the generation distributidre( g.(j))  bution g,,(j) can be approximated by a Poisson distribu-
in a similar manner to the case of(i). Using Theorem  tjon with parameter \,, = E,, [G] = H, — 1. Thatis,
1 andg,(j) = Z?;(} pn(i, ), we obtain the following _
J
theorem: gn(j) = 2e A 0<j<n—1. (21)

Theorem 3 When n > 3, the distribution of the genera-

tion in awormtree T., follows The proof of Corollary 4 is given in [18]. Fig. 2(b) veri-

fies Corollary 4, showing,, () obtained from Theorem
3 whenn = 1000, 2000, 5000, and 20000, as well as
the Poisson distribution with parametef[E]. It can be
seen that when is large, the Poisson distribution fits the
generation distribution closely.

Theorem 3 gives a method to calculate the distribution
of the generation recursively. Moreover, from Theorem3.4  Approximation to the Joint Distribu-
3, we can derive the statistical properties of the genera- tion
tion distribution in the following corollary.

9:() = Lgp 1) + Lgn1(j —1),0< i <n—1,
(18)
where g,,—1(—1) = 0.

Finally, we derive a closed-form approximation to the
Corollary 3 Whenn > 1, the expectation and the vari-  joint distributionp,, (¢, 7). From Equation (9), we can see
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Figure 3: Simulating the infection structure of the Code R2dvorm (o = 360, 000).

that whemn — oo, p, (i, j) = prn-1(4, j), which yields the simulator is not based on any mathematical model.
Instead, the simulator considers a discrete-time system

Pn(i;J) = gPu(i = 1.J)- (22) and mimics the random-scanning behavior of infected
Hence, we can obtain hosts in real world scenarios through a random num-
, , ber generator. Moreover, the parameter setting is based
.. 1\¢ N (1)t . o
Pn(i,j) = (5) Pn(0,7) ~ (5) gn(J)- (23) on the Code Red v2 worm'’s characteristics. For exam-

ple, the vulnerable population ig, = 360,000, and a
newly infected host is assigned with a scanning rate of
. _ 358 scans/min. Detailed information about how the pa-
pn(4, ) = (%)Z“ . Aj_%e—kn’ 0<i,j<n-—1, (24) rametersare chosen can be found in Section VIl of [23].
o We then extend the simulator to track the worm infec-
where\,, - H, — 1. The above derlvatlo_n also shows i, sirycture by adding the information of the number of
that Whe_m IS very Iargg, the number of chlldren_and the children and the generation to each infected host. More-
generation are almost independent random variables. o er e set the discrete time unit to 20 seconds and start
Fig. 2(c) shows the parity plot of the approximation - simylation at time tick O with patient zero. Note that
to the joint distribution whem = 2000. In the figure, \ e ramove the assumption used in the sequential growth
the x-axis is the actual, (i, j) obtained from Theorem 1,46 that no two hosts are compromised at the same
1_’ andthe y-axis is the.apprommage,dz, j) from Equa- time. That is, multiple hosts can be compromised at one
tion (24), where) < i, j < 30. It can be seen that most ;g ey Moreover, all new victims of the current time

points are on or near the diagonal line, indicating that thgjcy start scanning at the next time tick. The simulation
approximation to the joint distribution is reasonable. results (meant standard deviation) are obtained from

100 independent runs with different seeds and are pre-
4 Simulations and Verification sented in Fig. 3.

In thi . wdv th infecti truct Fig. 3(a) shows the distribution of the number of
n this section, we study the worm infection struc urechildren, comparing the simulation results ©f(i) for
through simulations. As far as we know, there is no pub-

licl lable data to show th I ‘ q n = ngo/4, ng, and4ng with the geometric distribution
lIcly avaiiable data o show the real worm tre€ and Ver-q,iqineq from Corollary 2. Note that the y-axis uses the
ify our analytical results. Moreover, real experiments in

. . . . log-scale. The vertical dotted line represents the stan-
a controlied environment arellmp.racucal for th's StUdy’aard deviation that goes into the negative territory. It can
since the closed-form approximations are derived base e seen that the distribution of the number of children
&an be well approximated by the geometric distribution

T_herlef?rfr,] V\{efaptply S|tmuLatlonsf.ths?c(;flcgllya V\ée first with parameter 0.5. This implies that(i) decreases ap-
simuiate the intection structure ortne L.ode Red vz worm roximately exponentially with a decay constantiof.

and then study the effects of important parameters on th%pecifically, in all three cases, on average 50.0% of the

worm tree. infected hosts do not have children, about 98.4% of them

e e have no more than five children, and 0.1% of them have
4.1 Code Red v2 Worm Verification no less than ten children. We also calculate the expecta-

We simulate the propagation of the Code Red v2 worntion and the variance of the number of children from the
by using and extending the simulator in [22]. Note thatsimulation and find that they are identical to the analyti-

Since whenmn is very large,g,,(j) follows closely the
Poisson distribution as in Corollary 4,
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Figure 4: Effects of the scanning rate, the scanning ratedsta deviation, and the hitlist size en(i) and g, (j)
(no = 360, 000).

cal results obtained from Corollary 1. Fig. 3(b) demon-dent simulation runs and are shown in Fig. 4.

strates the generation distribution, comparing the simu- Fig.s 4(a) and (b) show the effect of varying the scan-
lation results ofg,,(j) for n = ng/4, no, and4ne with  ning rates (scans/min) from 158 to 558 on the distri-
the Poisson distributions with parametef&] = H,,—1  putions of the number of children and the generation.
obtained from Corollary 4. It can be seen that the simulafHere, the scanning rate is set to a fixed value for every
tion results ofy,,(j) closely follow the Poisson distribu- infected hosti.e., the scanning rate standard deviation is
tions for all three cases. Hence, simulation results verifyp. The figures also plot the geometric distribution with
that the average path length of the worm tree increasegsarameter 0.5 and the Poisson distribution with parame-
approximately logarithmically with the total number of ter /7, —1 for reference. It can be seen that the scanning
infected hosts. Moreover, we also compute the expecrate does not affect the worm tree structure.

tation and the variance of the generation in simulations Fig.s 4(c) and (d) demonstrate the effect of the vari-
and verify the analytical results in Corollary 3. Fig. 3(C) ation of the scanning rates among different hogs, (
compares the measured joint distribution from simula-a)_ In our simulation, a newly infected host is assigned
tions with the approximated joint distribution from Equa- | it 5 scanning rate (scans/min) from a normal distribu-
tion (24) by using the parity plot. It can be seen that most;qn (358, #2). The figures show the simulation results
points are on or near the diagonal line, indicating that th§ o — 0. 100, and200. It can be seen that while the

approximation works well. scanning rate standard derivatiorhas no effect on the
generation distribution, it does affect the distributidn o
4.2 Effects of Worm Parameters the number of children. Specifically, whenincreases,
Next, we extend our simulator to examine the effects ofthe tail of ¢, (i) moves upward from the geometric dis-
three important parameters of worm propagation on théribution with parameter 0.5. This is because wlen
worm tree: the scanning rate, the scanning rate standatsecomes larger, the variation of the scanning rate among
deviation, and the hitlist size. When a parameter is studinfected hosts is greater. That is, there are more hosts
ied and varied, we set other parameters to the parameavith high scanning rates and also more hosts with low
ters of the Code Red v2 worm as used in Section 4.1scanning rates. As a result, those hosts with high scan-
The simulation results are obtained from 100 indepen+hing rates tend to infect a large number of hosts, making



the tail of ¢,,(¢) move upward. However, it is also ob-
served that whew is not very large (the case for real
worms), the geometric distribution with parameter 0.5 is [5]
still a good approximation.

In Fig.s 4(e) and (f), we show the effect of the hitlist
size on the worm tree. As pointed out in Section 2, when [g)
the hitlist size is greater than 1, the underlying infection
topology is a worm forest with the number of trees equal
to the hitlist size. Moreover, in a worm forest, it is intu-
itive that each tree is a smaller version of the single worm
tree of hitlist size 1 and has fewer nodes. Hence, itis not[8]
surprising to see that in Fig. 4(f), the generation dis-
tribution moves leftward when the hitlist size increases. g
However, the generation distribution can still be well ap-
proximated by the Poisson distribution with parameter|10]
H,, — 1, wheren,, is the average number of nodes in a
tree. Moreover, since in each tree the distribution of the
number of children can be approximated by the geometm]
ric distribution with parameter 0.5, in the worm forest
¢n(7) still follows closely the same distribution.

(4]

[7]

_ [12]
5 Conclusions

In this paper, we attempt to capture the key characterp3)
istics of the Internet worm infection family tree. We
have analyzed the infection tree formed by a wide clas$14]
of worms such as random-scanning worms, routable-
scanning worms, importance-scanning worms, opT1A]
STATIC worms, and SUBOPT-STATIC worms. Through
both mathematical analysis and simulation, we havg;g
shown that the number of children asymptotically has a
geometric distribution with parameter 0.5; and the gener-
ation closely follows a Poisson distribution with param-
eterE,[G] (i.e, H, — 1). [17]
As part of our ongoing work, we plan to relax our as-
sumptions to include more worm dynamics and apply OUlg)
observations to botnets. For example, we are studying
the infection structure of localized scanning [18], and ef-
fect of user defenses and re-infection on the worm tre€19]
[19]. Moreover, based on our observations, we are de-
veloping methods for detecting bots and studying poten-
. . [20]
tial countermeasures for a botnefy;, Conficker C) that
uses scan-based peer discovery to form a P2P-based bot-

net [18]. [21]
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