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Abstract: Most Internet worms use random scanning. The distribution of vulnerable
hosts on the Internet, however, is highly non-uniform over the IP-address space. This
implies that random scanning wastes many scans on invulnerable addresses, and more
virulent scanning schemes may take advantage of the non-uniformity of a vulnerable-
host distribution. Questions then arise as to how attackers may exploit such informa-
tion and how virulent the resulting worm may be. These issues provide “worst-case sce-
narios” for defenders and “best-case scenarios” for attackers when the vulnerable-host
distribution is available. This work develops such a scenario, called importance scan-
ning, which results from importance sampling in statistics. Importance scanning scans
the IP-address space according to an empirical distribution of vulnerable hosts. An
analytical model is developed to relate the infection rate of worms with the importance-
scanning strategies. Based on parameters chosen from Witty and Code Red worms,
the experimental results show that an importance-scanning worm can spread much
faster than either a random-scanning worm or a routing worm. In addition, a game-
theoretical approach suggests that the best strategy for defenders is to scatter appli-
cations uniformly in the entire IP-address space.
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1 Introduction

As the number of computers and communication net-
works increases, Internet worms have become increas-
ingly prevalent [8, 9, 12]. Using malicious, self-
propagating codes, worms spread rapidly by infecting
computer systems and disseminating themselves in an
automated fashion using the infected nodes.

Most worms employ random scanning to select tar-
get IP addresses. Since the density of vulnerable hosts
is low, a random scan hits a vulnerable machine with
a small probability. For example, the Code Red worm
infected a vulnerable population of 360,000 machines
among 232 IP addresses [19]. Thus, the probability
that a random scan will hit a vulnerable target is
only 360,000

232 = 8.38 × 10−5. Therefore, random scan-
ning wastes many scans on invulnerable addresses.

Future worms, however, are likely to employ more
effective scanning strategies to identify their targets.
Hence, it is important that advanced scanning strate-
gies that can potentially be used to access worst-case

scenarios be studied. This work proposes such an
optimal scanning method referred to as importance
scanning. Importance scanning is inspired by impor-
tance sampling in statistics [17, 6, 13]. The basic
idea of importance sampling is to make rare events
occur more frequently and thus reduce the number of
samples needed for accurately estimating the corre-
sponding probability. Rare events for worm scanning
correspond to hitting a target in a large population.
Thus, importance scanning allows attackers to focus
on the most relevant parts of an address space so that
the probability of hitting vulnerable hosts increases.

Importance scanning relies on a certain statistic
of an underlying vulnerable-host distribution. An
attacker can potentially obtain such information by
querying a database of parties to the vulnerable pro-
tocol, stealthy scanning the (partial) target address
space, and/or searching the records of old worms [14].

In view of the amount of information an attacker
can obtain, random, flash [15], and routing [20]
worms can be regarded as special cases of importance-
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scanning worms. In particular, a random worm has
no information about the vulnerable-host distribution
and thus regards the distribution as uniform in the
IPv4 space. A flash worm acquires all knowledge,
and the target distribution is uniform only in the
vulnerable-population space. A routing worm has the
knowledge from BGP routing tables about the space
of existing hosts, and the corresponding distribution
can be considered as uniform in the routing space.

In this work, we assume that a probability distribu-
tion of vulnerable hosts is available/obtainable. We
then intend to answer the following questions:

• How can an attacker design a fast importance-
scanning worm by taking advantage of the knowl-
edge of the vulnerable-host distribution?

• How can we quantitatively analyze the relation-
ship between the speed that worms can achieve
and the knowledge that attackers can obtain?

• How can a defender counteract such importance-
scanning worms?

To answer these questions, we focus on two quanti-
ties: the infection rate that characterizes how fast
worms can spread at an early stage and the scanning
strategy that is used to locate vulnerable hosts. We
first derive relationships between the infection rate
and scanning strategies. We then model the spread of
importance-scanning worms using the analytical ac-
tive worm propagation (AAWP) model [1]. We de-
rive the optimal scanning strategy that maximizes
the infection rate. That is, the optimal strategy cor-
responds to the best-case scenario for attackers and
the worst-case scenario for defenders. As the optimal
strategy is difficult to achieve in reality, we derive
a suboptimal scanning strategy as an approximation.
To assess the virulence, we compare importance scan-
ning with random and routable scanning. We take the
empirical distributions of Witty-worm victims and
Web servers as examples of the vulnerable-host distri-
bution. We show that an importance-scanning worm
based on parameters chosen from real measurements
can spread nearly twice as fast as a routing worm
before the victim population becomes saturated.

Moreover, we demonstrate, from the viewpoint
of game theory, that a defense mechanism against
importance-scanning worms requires the uniform dis-
tribution of an application. Under this defense strat-
egy, the best strategy of importance scanning is equiv-
alent to the random-scanning strategy.

Our designed importance scanning is inspired by
importance sampling [17, 6, 13]. Our work, however,
is different from [17] in that [17] is on estimating the
density of Web servers, and we focus on optimal scan-
ning worms that use an uneven vulnerable-host dis-
tribution. Hence, while [17] studies a static quantity
as the density of Web servers, we consider a dynamic
process as the worm propagation. Moreover, [17] uses
the variance of an estimator as the performance in-
dicator, and we employ the worm propagation speed,
such as the infection rate, as the objective function.

The remainder of this paper is structured as follows.
Section 2 provides the background on worm-scanning
methods, vulnerable-host distributions, and a ran-
dom worm propagation model. Section 3 describes
the problem. Section 4 characterizes the importance-
scanning strategy through the theoretical analysis.
Section 5 shows the propagation speed of importance-
scanning worms empirically. Section 6 further dis-
cusses the defense strategy and Section 7 concludes
the paper.

2 Preliminaries

2.1 Scanning Methods

A worm spreads by employing distinct scanning
mechanisms such as random, localized, and topolog-
ical scanning [14]. Random scanning, used by such
infamous worms as Code Red and Slammer, selects
target IP addresses at random. Localized scanning,
used by the Code Red II and Nimda worms, prefer-
entially scans for hosts in the “local” address space.
Topological scanning, used by the Morris worm, relies
on the “address” information contained in the victim
machines to locate new targets.

Some advanced scanning methods have been devel-
oped in the research community. For example, Stani-
ford et al. presented the “hitlist” idea [14] to speed up
the spread of worms at the initial stage. This list con-
sists of potentially vulnerable machines that are gath-
ered beforehand and targeted first when the worm
is released. An extreme case for the hitlist-scanning
worms is a flash worm, which gathers all vulnerable
machines into the list. The flash worms are consid-
ered the fastest possible worms [15], for every scan can
hit a vulnerable host. Another method that improves
the spread of worms is to reduce the scanning space.
Attackers can potentially achieve this by using the in-
formation provided by BGP routing tables. This type
of worm is called a “routable-scanning worm” [16] or
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a “routing worm” [20]. Zou et al. designed two types
of routing worms [20]. One type, based on Class-A
(x.0.0.0/8) address allocations, is thus called “Class-
A routing worms.” Such worms can reduce the scan-
ning space to 45.3% of the entire IPv4 address space.
The other type, based on BGP routing tables, is thus
called “BGP routing worms.” Such worms can reduce
the scanning space to only about 28.6% of the entire
IPv4 address space. Another strategy that a worm
can potentially employ is DNS random scanning [5],
in which a worm uses the DNS infrastructure to lo-
cate likely targets by guessing DNS names instead of
IP addresses. Such a worm in the IPv6 Internet is
shown to exhibit a propagation speed comparable to
that of an IPv4 random-scanning worm.

Most of these advanced worms can propagate far
faster than a traditional random-scanning worm.
When these advanced worms are studied, however,
the vulnerable hosts are assumed to be uniformly dis-
tributed in either the entire IPv4 address space or
the scanning space. Hence, the information on a
vulnerable-host distribution is not exploited by the
worms.

2.2 Vulnerable-Host Distributions

The distribution of vulnerable hosts in the Internet
is not uniform. This is evident as no hosts can ex-
ist in reserved or multicast IPv4 address ranges as-
signed by the Internet Assigned Number Authority
(IANA) [23, 18]. More importantly, the vulnerable-
host distribution may be highly non-uniform over the
registered IPv4 address space as indicated by our two
collected traces. One trace is a traffic log of the Witty
worm obtained from CAIDA [24]. The Witty worm
attacks ISS firewall products and carries a destruc-
tive payload [12]. CAIDA used a Network Telescope
to record packets from victims of the Witty worm.
Since the network telescope approximately contains
the addresses of a Class-A subnet, the collected trace
can accurately reflect the distribution of hosts that
are vulnerable to the Witty worm [12]. The collected
victim addresses are then used to estimate the proba-
bility distribution of Witty-worm victims in group i,
where

pg(i) =
number of addresses in group i

total number of collected addresses
. (1)

The /8 subnet empirical distribution of Witty-worm
victims is shown in Figure 1(a). The other trace is
on Web servers. We collected 13,866 IP addresses
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(a) /8 subnet distribution of Witty-worm victims.
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(b) /16 subnet distribution of Web servers.

Figure 1: Uneven distributions of Witty-worm vic-
tims and Web servers.

of Web servers provided by the random Uniform Re-
source Locator (URL) generator from UROULETTE
(http://www.uroulette.com/) on January 24, 2005.
The empirical distribution of Web servers can be com-
puted via Equation (1), and Figure 1(b) shows the /16
subnet distribution.

It is observed that the distributions of both Witty-
worm victims and Web servers are far from uniform
in the routable address space. A statistical analy-
sis of network telescope observations also shows that
the victims of Code Red and Slammer worms have
a highly non-uniform geographical distribution [8, 9].
Moreover, DShield [22] data indicate that the distri-
butions of vulnerable hosts among prefixes follow a
power law [11].
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2.3 Random Worm Propagation Model

We now review a worm propagation model as prepara-
tion for relating the rate of worm spread with the dis-
tribution of vulnerable hosts. A simple model, known
as the susceptible → infected (SI) model, has been
used to model the spread of random-scanning worms
in various earlier works [14, 20, 5]. The model as-
sumes that each host has only two states: susceptible
or infected. Once infected, a host remains infected.

As importance scanning (sampling) is usually per-
formed in discrete time [17], we adopt a discrete-time
SI model. In particular, we use the analytical ac-
tive worm propagation (AAWP) model, developed by
Chen et al. in [1]. In the AAWP model, the spread of
random-scanning worms is characterized as follows:

It+1 = It + (N − It)[1− (1− 1
Ω

)sIt ], (2)

where It is the number of infected hosts at time t
(t ≥ 0); N is the number of vulnerable hosts; s is
the scanning rate of the worm; and Ω is the scanning
space. At t = 0, I0 represents the number of hosts on
the hitlist.

When a worm begins to spread, It << N and
sIt << Ω. The AAWP model can be approximated
by

It+1 ≈ It + N · sIt

Ω
= (1 + α)It, (3)

where α = sN
Ω is the infection rate [20]. The infec-

tion rate represents the average number of vulnera-
ble hosts that can be infected per unit time by one
infected host during the early stage of worm prop-
agation. Based on Equation (3), It ≈ (1 + α)tI0,
i.e., the number of infected hosts increases exponen-
tially. Therefore, to speed up the spread of worms
at the early stage, attackers should design effective
scanning methods to increase the infection rate. For
instance, a traditional random worm scans the entire
IPv4 address space, and thus Ω = 232. The infection
rate of this worm is α0 = sN

232 . In contrast, a BGP
and a Class-A routing worm can achieve faster infec-
tion rates with the same scanning rate and the same
number of targets [20]: α1 = sN

0.286×232 = 3.5α0 and
α2 = sN

0.453×232 = 2.2α0.

3 Problem Description

We now describe the problems studied in this paper.
Let s be the scanning rate or the number of scans

that an infected host sends per unit time. Define
An (1 ≤ n ≤ s) as an IPv4 address probed by the
nth scan from an infected host at the early stage of
worm propagation. Thus, An is a random variable,
and An ∈ {1, 2, · · · , 232}. Let I(An) denote the vul-
nerability of address An,

I(An) =
{

1, if address An is vulnerable to a worm;
0, otherwise.

Thus,
∑

An
I(An) = N . Let p(An) denote the actual

vulnerable-host distribution, i.e., the probability that
I(An) = 1.

p(An) =
I(An)

N
=

{
1
N , if I(An) = 1;
0, if I(An) = 0.

It is noted that
∑

An
p(An) = 1.

Let p∗(An) denote the probability that the worm
scans address An. p∗(An) can be a uniform distribu-
tion as in random-scanning worms or a non-uniform
biasing distribution as in flash worms. p∗(An) is cho-
sen by an attacker. The choice of the scanning distri-
bution p∗(An) is essential to the effectiveness of im-
portance scanning. As we shall see, p∗(An) depends
on the actual probability distribution p(An).

In this paper, we intend to answer the following
questions:

• Given complete knowledge about p(An), what is
the optimal choice of p∗(An) that maximizes in-
fection rate α?

• Given partial knowledge about p(An), what is
the optimal choice of p∗(An) that maximizes α?

• What are the spread dynamics of importance-
scanning worms using the optimal or the practi-
cal choice of p∗(An)?

• How much faster can an importance-scanning
worm spread than a random or a routing worm?

• How can we defend against such importance-
scanning worms by customizing p(An)?

Table 1 shows the notations used in this paper.

4 Importance Scanning

We begin by answering the first three of these five
questions in this section. This suffices to deriving
the infection rate of importance-scanning worms and
modeling the spread of importance-scanning worms.
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Table 1: Notations used in this paper.
Notation Explanation
s Scanning rate: Number of scans that an infected host sends per unit time
N Total number of vulnerable hosts
Ω Scanning space: address space that a worm scans
p(An) Actual vulnerable-host distribution: Probability of address An being vulnerable to a worm
p∗(An) Scanning distribution: Probability of a worm scan hitting address An

R Number of vulnerable hosts that can be infected per unit time by one infected host during the
early stage of worm propagation

α Infection rate: α = E[R]
It Expected number of infected host at time t
m Number of groups in the Internet
Ni Number of vulnerable hosts in group i
Ωi Size of address space in group i
Di Set of addresses in network i
It,i Expected number of infected hosts in group i at time t
pg(i) Group distribution: Percentage of vulnerable hosts in group i
p∗g(i) Group scanning distribution: Probability of a worm scan hitting group i

pi(b) Interface distribution: Probability of finding a vulnerable host with the interface equal to b,
given that the host is in network i

p∗i (b) Interface scanning distribution: Probability of scanning interface b, given that a scan hits
network i

vi Vulnerable-host density: vi = pg(i)
Ωi

4.1 Infection Rate

Let R be the number of hosts that can be infected per
unit time by one infected host during the early stage
of worm propagation. R can be expressed as

R =
s∑

n=1

I(An), (4)

where we assume that different scans do not hit the
same target at the early stage of worm propagation,
i.e., if i 6= j, then Ai 6= Aj . Therefore, the infection
rate is given by

α = E∗[R] (5)

=
s∑

n=1

E∗[I(An)] (6)

=
s∑

n=1

∑

An

I(An)p∗(An) (7)

= N

s∑
n=1

∑

An

p(An)p∗(An) (8)

= sN
∑

An

p(An)p∗(An), (9)

where E∗[·] denotes the expectation with respect to
the scanning distribution p∗(An). It is noted that

α ≤
s∑

n=1

∑

An

p∗(An) = s, (10)

for any p∗(An).

Hence, the infection rate is strongly influenced by
the choice of scanning distribution p∗(An). A choice
of p∗(An) determines a scanning strategy, and a good
choice, in the view of an attacker, should maximize in-
fection rate α. Two special cases have been observed
on “choosing” p∗(An). The first case is the random-
scanning worms, in which p∗(An) = 1

232 . Thus,
α = sN

232 = α0. The second case is the flash worms, in
which p∗(An) = p(An). In this case, p∗(An) obtains
the optimal scanning strategy p∗opt(An), which leads
to maxp∗(An){α} = s, indicating that every scan from
the worm would hit a vulnerable host.

One interpretation of p∗opt(An) suggests that a good
worm scanning strategy should concentrate the scans
on the areas that are more likely to find a vulnera-
ble host. The vulnerable-host probability distribution
p(An), however, cannot be obtained without probing
the entire IP address space or gathering a complete
database of parties to the vulnerable protocol. There-
fore, attackers may not acquire the entire knowledge
of p(An). However, partial knowledge can be ob-
tained, e.g., by aggregating the subspaces of IP ad-
dresses.
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4.2 Group Distributions

Such partial information is referred to as group dis-
tributions, which capture the statistics of groups
of addresses rather than individual addresses. The
vulnerable-host probability distribution in groups is
essentially the marginal of the actual distribution
p(An). Such groups of addresses can be formed in sev-
eral ways. For example, IP addresses can be grouped
by using the conventional 4-byte description. In [17],
this approach is applied to measure the size of the
Internet via importance sampling. Here, we extract
relevant groups in a more general setting by defining
the networks. In particular, we regard a network as a
group of IP addresses that can be identified by such
diverse methods as either the first byte of IP addresses
(/8 subnets) or IP prefixes in CIDR.

We assume that the Internet is partitioned into m
networks. Let Di (i = 1, 2, · · · ,m) denote the par-
tition set of addresses in network i, which has Ωi

(Ωi ≥ 0) addresses. Thus,
∑m

i=1 Ωi = Ω = 232. We
define the group distribution pg(i) (i = 1, 2, · · · , m)
as the proportion of vulnerable hosts in network i,
i.e.,

pg(i) =
Ni

N
=

∑

An∈Di

p(An), (11)

where Ni is the population of vulnerable hosts in net-
work i.

The partition of networks reflects the knowledge
that attackers can obtain. For example, in one ex-
treme case of random-scanning worms, m = 1 and
Ω1 = 232. In the other extreme case of flash worms,
m = 232 and Ωi = 1 (i = 1, 2, · · · , 232). Another
choice of partitioning networks is based on the first
byte of IP addresses (/8 subnets), where m = 28 and
Ωi = 224 (i = 1, 2, · · · , 28). The amount of knowledge
collected by the worm with the /8 subnet distribu-
tion is only partial, somewhere between that by the
random worm and that by the flash worm.

Recall that the goal of importance scanning is to
maximize the infection rate. From Equation (9), we
have the infection rate

α = sN

m∑

i=1

∑

An∈Di

p(An)p∗(An). (12)

Refer to the location of an address An, which is
in network i, as the interface denoted by b (b =
0, 1, · · · , Ωi − 1). Let pi(b) denote the actual prob-
ability of finding a vulnerable host with the interface
equal to b, given that the host is in network i, i.e.,

pi(b) = I(An)
Ni

. Similarly, define group scanning distri-
bution p∗g(i) as the probability of scanning network i
and interface scanning distribution p∗i (b) as the prob-
ability of scanning interface b, given that a scan hits
network i for the scanning distribution p∗(An). We
can obtain

p(An) = pg(i) · pi(b) (13)
p∗(An) = p∗g(i) · p∗i (b), (14)

where An is in network i with interface b. From Equa-
tions (13) and (14), the infection rate becomes

α = sN

m∑

i=1

Ωi−1∑

b=0

pg(i)pi(b)p∗g(i)p
∗
i (b) (15)

= sN
m∑

i=1

[
pg(i)p∗g(i)

Ωi−1∑

b=0

pi(b)p∗i (b)

]
. (16)

We assume that attackers can obtain information only
about group distribution pg(i) and cannot acquire
further knowledge about interface distribution pi(b).
Therefore, if a scan hits network i, the Ωi hosts in this
network are targeted by that scan with the same like-
lihood, i.e., p∗i (b) = 1

Ωi
. Hence, Equation (16) yields

α = sN

m∑

i=1

pg(i)p∗g(i)
Ωi

. (17)

Equation (17) provides the relationships among the
infection rate, the group distribution, and the group
scanning distribution. Let vi = pg(i)

Ωi
, referred to as

the vulnerable-host density in group i, then

α = sN
m∑

i=1

vip
∗
g(i) (18)

≤ sN
m∑

i=1

max
k
{vk}p∗g(i) (19)

= sN max
k
{vk}. (20)

The equality holds when p∗g(j) = 1, j =
arg maxk {vk}; or 0, otherwise. This means that the
optimal importance scanning of a worm is to scan only
the network with the largest vulnerable-host density.

4.3 Importance-Scanning Worm Propagation
Model

We now model the spread dynamics of importance-
scanning worms based on the information of a group
distribution.
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At time t (t ≥ 0), let It,i denote the average number
of infected hosts in network i. Thus, the total number
of infected hosts It =

∑m
i=1 It,i. The rate at which

network i is scanned is sItp
∗
g(i). As an importance

scanning worm employs random scanning within each
network, on the next time epoch, the number of in-
fected hosts in network i can be derived by the AAWP
model, i.e.,

It+1,i = It,i + (Ni − It,i)[1− (1− 1
Ωi

)sItp∗g(i)], (21)

where i = 1, 2, · · · , m and t ≥ 0. I0,i is the number
of initially infected hosts in network i. The above
equation yields

It+1,i = It,i + sIt

(Ni − It,i)p∗g(i)
Ωi

−O(
1

Ωi
2 ). (22)

Since 1
Ωi

<< 1, we ignore item O( 1
Ωi

2 ). Summing over
i = 1, 2, · · · ,m on both sides, we obtain

It+1 = It + sIt

m∑

i=1

(
Ni − It,i

Ωi
)p∗g(i)

≤ It + sIt

m∑

i=1

max
k
{Nk − It,k

Ωk
}p∗g(i)

= [1 + s ·max
k
{Nk − It,k

Ωk
}]It. (23)

The equality holds when

p∗g(j) =

{
1, j = arg maxk {Nk−It,k

Ωk
};

0, otherwise.
(24)

When t = 0, Ni >> It,i and then maxk {Nk−It,k

Ωk
} ≈

N maxk {vk}, which leads to α = sN maxk {vk}. The
above derivation results in an optimal importance-
scanning strategy that maximizes the infection rate.

Optimal importance scanning:

1. At each time step t, the worm first finds
the network that has the largest value of
the left vulnerable-host density, i.e., j =
arg maxk {Nk−It,k

Ωk
}.

2. Then all infected hosts concentrate on scanning
this network. That is, p∗g(j) = 1 and p∗g(i) = 0,
∀i 6= j.

This optimal importance scanning strategy, how-
ever, is not realistic. First, N may not be known in
advance. Second, the network that has the largest
value of the left vulnerable-host density changes with

time, and therefore, the optimal assignment of p∗g(i)
is time-varying. Even when N were given, it would
require that each infected host knows It,i, which
leads to numerous information exchanges between in-
fected hosts. However, the essence of optimal impor-
tance scanning is that it provides the best scenario of
worm scanning using the vulnerable-host distribution,
which can be used as the baseline for a suboptimal se-
lection of p∗g(i).

A simple strategy for suboptimal importance scan-
ning is to assume p∗g(i) = pg(i)/ΩiPm

j=1 pg(j)/Ωj
. That is, the

probability that a worm scans network i is propor-
tional to the vulnerable-host density of this network.
If Ω1 = Ω2 = · · · = Ωm, then p∗g(i) = pg(i). For this
scanning strategy, Equation (21) becomes

It+1,i = It,i + (Ni − It,i)[1− (1− 1

Ωi
)
sIt

pg(i)/ΩiPm
j=1 pg(j)/Ωj ]. (25)

Suboptimal importance scanning:

1. Before a worm is released, an attacker first ob-
tains vulnerable-host group distribution pg(i)
and then encodes group scanning distribution
p∗g(i) = pg(i)/ΩiPm

j=1 pg(j)/Ωj
in the worm code.

2. At each time step t, the worm scans network i
with probability p∗g(i).

5 Experiments

In this section, we study the propagation speed
of importance-scanning worms based on parameters
chosen from the real measurements. We first intro-
duce the experimental set-up. We then show the ef-
fect of knowledge and vulnerable-host distributions
on the propagation of importance-scanning worms.
Finally, we compare importance scanning with ran-
dom and routable scanning.

5.1 Experimental Set-up

In our experiments, we use the model in Equation (2)
to imitate the spread of random-scanning and routing
worms. Meanwhile, we employ the model in Equa-
tions (21) and (24) to study propagation as a result
of the optimal importance-scanning strategy. We also
use the model in Equation (25) to simulate the spread
of suboptimal importance-scanning worms. To imple-
ment the models in Equations (21), (24), and (25), we
need to obtain group distribution pg(i). Here, we use
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Figure 2: Effect of knowledge.

the Witty-worm victim and the Web-server distribu-
tions as examples of the vulnerable-host distribution.
In other words, we assume that worms attack vulner-
able hosts with the same group distribution as that
of Witty-worm victims or Web servers. Our collected
trace of Web servers does not include all Web servers.
However, we assume that the estimated results ob-
tained by Equation (1) are the actual group distribu-
tion of Web servers.

The parameters we use in simulated worms are
comparable to those in Witty and Code Red worms
for evaluating propagation. The Witty worm has
a vulnerable population N = 12, 000 and a scan-
ning rate s = 1, 200 per second [12, 21]. The
Code Red worm has parameters N = 360, 000 and
s = 358 per minute [19]. The victims of the Code
Red worm is assumed to have the same group dis-
tribution as Web servers. We then refer to such
an importance-scanning worm as the importance-
scanning (IS) Witty or Code Red. Since the experi-
mental results of the Code Red worm are similar to
those of the Witty worm, we mainly present the ob-
servations from the Witty worm.

5.2 Knowledge Effect

The amount of knowledge about a vulnerable-host
distribution affects the rate of spread of importance-
scanning worms. Figure 2 shows the propagation
comparison among suboptimal importance-scanning
Witty worms with different amounts of knowledge
about the vulnerable-host distribution, assuming a
hitlist of 10 (i.e., I0 = 10). If a worm has the /0
subnet distribution, it knows nothing about the dis-
tribution and thus has to use random scanning. We
assume that all three Witty worms have the same
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Figure 3: Effect of distributions.

scanning rate, although a worm that contains more
information about the group distribution might slow
down for a larger payload. It takes the Witty worm
with a /0 subnet distribution 46.3 minutes to infect
90% of vulnerable hosts, whereas the Witty worms
with a /8 subnet distribution and a /16 subnet dis-
tribution take only 6.6 minutes and 1.6 minutes, re-
spectively. Therefore, more information about the
vulnerable-host distribution may help an attacker de-
sign a faster worm.

5.3 Vulnerable-Host Distribution Effect

A vulnerable-host distribution also affects the rate
of propagation of importance-scanning worms. Fig-
ure 3 demonstrates the spread of the suboptimal
importance-scanning Witty worms using the /8 sub-
net distribution, in which vulnerable hosts follow dif-
ferent distributions, assuming a hitlist of 10 (i.e.,
I0 = 10). A uniform distribution in IPv4 can slow
down the worm at least six times than the Witty-
worm victim distribution before the victim popula-
tion becomes saturated. Therefore, the distribution
of vulnerable hosts strongly affects the rate of spread
of importance-scanning worms.

5.4 Propagation Comparisons

Importance scanning also helps hasten the propaga-
tion of a worm. Figure 4(a) shows how propagation
as a result of importance-scanning Witty worms com-
pares with that of random and BGP routing Witty
worms, assuming a hitlist of 10 (i.e., I0 = 10). The
rate of spread of importance-scanning Witty worms
increases significantly by using the information on the
/8 subnet distribution of vulnerable hosts. The opti-
mal importance-scanning Witty worm can infect 90%
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(a) Witty worm with a hitlist of 10
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Figure 4: Witty worm propagation comparisons.

vulnerable hosts in as few as 4.2 minutes, whereas the
BGP routing Witty worm requires 13.3 minutes. The
suboptimal importance-scanning Witty worm spreads
more slowly than the optimal worm, but only takes
6.6 minutes to infect the same number of hosts. A
BGP routing worm obtains the refined information
about the routable space than the worm using the /8
subnet distribution. The BGP routing worm, how-
ever, employs random scanning in the BGP routable
space. Hence, such a worm, most of time, spreads
more slowly than the importance-scanning worm with
the /8 subnet distribution, which exploits the under-
lying uneven distribution of vulnerable hosts.

Once most of the vulnerable hosts are infected, the
spread of the suboptimal importance-scanning Witty
worm slows down. This is because the suboptimal
strategy always uses the same group scanning distri-
bution. As the infected hosts become saturated, a
network that initially has more vulnerable hosts ac-
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Figure 5: Code Red worm propagation comparison.

tually contains fewer uninfected vulnerable machines.
To overcome this problem, suboptimal importance
scanning can choose to switch to the routable scan-
ning when only a few uninfected vulnerable hosts are
left. Figure 4(b) shows the results for the same exper-
iments, assuming a hitlist of 1,000. Suboptimal im-
portance scanning switches to Class-A routable scan-
ning when 90% vulnerable hosts are infected. Com-
pared with the propagation of a BGP routing worm,
importance-scanning worms spread faster before the
victim population becomes saturated.

Figure 5 shows the propagation comparison among
an optimal importance-scanning Code Red worm, a
suboptimal importance-scanning Code Red worm, a
Class-A routing Code Red worm, and a random Code
Red worm, assuming I0 = 10. The importance-
scanning Code Red worms use the /8 subnet distri-
bution. The suboptimal importance-scanning Code
Red worm can propagate nearly twice as fast as the
Class-A routing Code Red worm before the victim
population becomes saturated.

With regard to the storage requirement for /8
subnet group-distribution information, each pg(i) re-
quires 4 bytes, and each /8 prefix 1 byte. Therefore,
the total number of bytes is 5 × 256 = 1280. We
can reduce this payload by removing the entries with
pg(i) = 0, where i ∈ {0, 1, · · · , 255}. Since there are
only 97 entries with non-zero pg(i)’s according to the
empirical distribution in Figure 1(a), the table can
be stored in a 97× 5 = 485 byte payload. Hence, the
scanning rate of importance-scanning worms will not
decrease much.
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6 Game Theory for Attackers and Defenders

Defense against such importance-scanning worms can
be modeled by relating it to the interaction between
attackers and defenders in game theory. Assume
that when an application is introduced to the Inter-
net, defenders can choose how to deploy this applica-
tion in networks. That is, group distribution pg(i)
can be controlled by defenders, thus leading to a
game between attackers and defenders. The attack-
ers attempt to maximize the infection speed (char-
acterized by infection rate α in Equation (17)) by
choosing optimal group scanning distribution p∗g(i),
while the defenders endeavor to minimize the worm
propagation speed by customizing group distribution
pg(i). Let V = {p∗g :

∑m
i=1 p∗g(i) = 1} stand for

the set of group scanning probability vectors p∗g. Let
U = {pg :

∑m
i=1 pg(i) = 1} represent the set of feasible

probability assignments for the application distribu-
tion. An attacker fears that if a defender knows about
the worm-scanning strategy, the defender would then
choose a strategy that minpg∈U{α}. Therefore, the
objective of an attacker is to choose group scanning
distribution p∗g(i) that maximizes the minimum value,
i.e.,

max
p∗g∈V

min
pg∈U

sN
m∑

i=1

pg(i)p∗g(i)
Ωi

. (26)

In a similar argument, the objective of a defender is

min
pg∈U

max
p∗g∈V

sN

m∑

i=1

pg(i)p∗g(i)
Ωi

. (27)

This is a classical two-person zero-sum game, and the
following well-known theorem [10] gives an optimal
solution.

Theorem 1. There exists an optimal solution to the
worm-scanning game, where

αopt = max
p∗g∈V

min
pg∈U

sN
m∑

i=1

pg(i)p∗g(i)
Ωi

(28)

= min
pg∈U

max
p∗g∈V

sN
m∑

i=1

pg(i)p∗g(i)
Ωi

, (29)

where αopt is the value of the game.

The solution of this minmax problem is derived in
the following theorem.

Theorem 2. The value of the worm-scanning game
is αopt = sN

232 , and the best strategy for a defender is
to distribute the application uniformly in the Internet,
i.e., pg(i) = Ωi

232 , where i = 1, 2, · · · ,m.

Proof: From Equation (20), we have

max
p∗g∈V

α = sN max
k
{pg(k)

Ωk
}. (30)

Set J = maxk {pg(k)
Ωk

}. The optimal choice of

pg(i)′s requires that J be minimized. Since pg(i)
Ωi

≤
maxk {pg(k)

Ωk
} = J , pg(i) ≤ JΩi for ∀i. Thus,

1 =
m∑

i=1

pg(i) ≤
m∑

i=1

JΩi = JΩ, (31)

which leads to J ≥ 1
Ω . The inequality holds when

pg(i)
Ωi

= J = 1
Ω for ∀i. That is, pg(i) = Ωi

Ω = Ωi
232 , where

i = 1, 2, · · · ,m, i.e., the defenders should deploy the
application uniformly in the entire IP-address space.

Combining pg(i) = Ωi
232 with Equation (30), the

game value is αopt = sN
232 .

From Theorem 2, we note that when the defender
uses the optimal strategy, the best strategy that the
attacker exploits is equivalent to the random-scanning
strategy. Meanwhile, Figure 3 demonstrates that the
vulnerable-host distribution has a strong effect on
worm propagation. Therefore, the design of the fu-
ture Internet should consider how to distribute an
application in security engineering.

In the current Internet, however, the application
distributor may not control how to deploy the appli-
cation in the entire IPv4 address space. Although not
applicable for the entire Internet, the best strategy
of defenders can still apply for enterprise networks.
That is, if an enterprise network attempts to defend
against importance-scanning worms, the administra-
tor of this network should distribute the application
uniformly in the entire enterprise network from the
viewpoint of game theory.

7 Conclusions

In order to effectively defend against Internet worms,
we must study potential scanning techniques that at-
tackers may employ. In this paper, we present an
optimal worm-scanning method, called importance
scanning, using the information of a vulnerable-host
distribution. This scanning strategy then provide a
best-case scenario for attackers when the vulnerable-
host distribution is available. Importance scanning
can be combined with other scanning methods such
as hitlist scanning. Moreover, the division of groups
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can be very general, such as Domain Name System
(DNS) Top-Level Domains, countries, Autonomous
Systems, IP prefixes in Classless Inter-Domain Rout-
ing (CIDR), the first byte of IP addresses (/8 sub-
nets), or first two bytes of IP addresses (/16 subnets).
For example, when naming distribution information
is exploited, importance scanning can also be applied
to DNS worms [5], which is worth further investiga-
tion. In addition, when IPv4 is updated to IPv6, an
importance-scanning worm will not be slowed down
very much if vulnerable hosts are still distributed in a
clustered fashion. A game-theoretical approach sug-
gests that the best strategy for defenders is to dis-
tribute the applications evenly in the entire address
space or in each enterprise network.

As part of our ongoing work, we are studying how
an intelligent worm can learn about the underlying
vulnerable-host distribution if such information is un-
known before the worm is released [3]. We plan to in-
vestigate how future worms can use advanced learning
algorithms to obtain information needed and how we
can counteract such smart worms.
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