
Importance-Scanning Worm Using Vulnerable-Host Distribution
Zesheng Chen and Chuanyi Ji

School of Electrical & Computer Engineering
Georgia Institute of Technology, Atlanta, Georgia 30332

Email: {zchen, jic}@ece.gatech.edu

Abstract— Most Internet worms use random scanning. The
distribution of vulnerable hosts on the Internet, however, is
highly non-uniform over the IP-address space. This implies that
random scanning wastes many scans on invulnerable addresses,
and more virulent scanning schemes may take advantage of the
non-uniformity of a vulnerable-host distribution. Questions then
arise how attackers may make use of such information, and
how virulent the resulting worm may be. These issues provide
“worst-case scenarios” for defenders and “best-case scenarios”
for attackers if the vulnerable-host distribution is available.
This work develops such a scenario as the so-called importance
scanning. Importance scanning results from Importance Sampling
in statistics that scans IP-address space according to an empirical
distribution of vulnerable hosts. An analytical model is developed
to relate the infection rate of worms with the importance-
scanning strategies. Experimental results based on parameters
chosen from Code Red and Slammer worms show that an
importance-scanning worm can spread much faster than both
a random-scanning worm and a routing worm. Furthermore,
a game-theory approach suggests that the best strategy for
defenders is to scatter applications uniformly in the entire IP-
address space.

Index Terms— Security, Worm propagation, Modeling, Game
theory, Importance scanning

I. INTRODUCTION

As computers and communication networks become preva-
lent, the Internet is plagued by many worms [5], [6], [9].
Using self-propagating malicious codes, worms spread rapidly
by infecting computer systems and disseminating themselves
in an automated fashion using the infected nodes.

Most worms employ random scanning to select target IP
addresses. Since the density of vulnerable hosts is low, a ran-
dom scan hits a vulnerable machine with a small probability.
Thus random scanning wastes many scans on invulnerable
addresses. For example, Code Red infected a vulnerable popu-
lation of 360,000 machines among 232 IP addresses [16]. The
probability for a random scan to hit a vulnerable target is thus
only 360,000

232 = 8.38 × 10−5.
Future worms, however, are likely to employ more effective

scanning strategies in identifying the targets. Hence it is
important to study advanced scanning strategies, which can
potentially be used to access worst-case scenarios. This work
proposes a novel scanning method, referred to as importance
scanning. Importance scanning is inspired by importance sam-
pling in statistics [15], [4], [10]. The basic idea of importance
sampling is to make rare events occur more frequently, and
thus reduces the number of samples needed for accurately
estimating the corresponding probability. Rare events for worm
scanning correspond to hitting a target in a large population.
Importance scanning thus allows attackers to focus on the most

relevant parts of an address space so that the probability of
hitting vulnerable hosts can be made larger.

Importance scanning relies on a certain statistic of an under-
lying vulnerable-host distribution. An attacker can potentially
obtain such information by querying a database of parties
to the vulnerable protocol, stealthy scanning (partial) target
address space, and/or searching records of old worms [11].

In view of the amount of information an attacker can obtain,
random, flash [12], and routing [17] worms can be regarded
as special cases of importance-scanning worms. In particular,
a random worm has no information about vulnerable-host
distribution and thus regards the distribution as uniform in
IPv4 space. A flash worm acquires all knowledge and the
target distribution is uniform only in the vulnerable-population
space. A routing worm has knowledge from BGP routing
tables about the space of existing hosts, and the corresponding
distribution can be considered as uniform in the routing space.

In this work, we assume that a probability distribution of
vulnerable hosts is available/obtainable. We then intend to
answer the following questions:

• How can an attacker design a fast importance-scanning
worm by taking advantage of the knowledge of
vulnerable-host distribution?

• How can we analyze quantitatively the relationship be-
tween the speed that worms can achieve and the knowl-
edge that attackers can obtain?

To answer these questions, we focus on two quantities: the
infection rate that characterizes how fast worms can spread
at an early stage and the scanning strategy that is used to
locate vulnerable hosts. We first derive a relationship between
the infection rate and scanning strategies. We then model the
spread of importance-scanning worms using the Analytical
Active Worm Propagation (AAWP) model [1]. We derive the
optimal scanning strategy, which maximizes the infection rate.
The optimal strategy thus corresponds to the best-case scenario
for attackers and the worst-case scenario for defenders. As
the optimal strategy is difficult to achieve in reality, we
derive a suboptimal scanning strategy as the approximation.
To assess the virulence, we compare the importance scanning
with the random and routable scanning. We take the empirical
distribution of web servers as an example of vulnerable-
host distribution. We show that an importance-scanning worm
can spread nearly twice faster than a routing worm based
on parameters chosen from real measurements. Moreover,
we demonstrate, from a view of game theory, that defense
mechanisms against importance-scanning worms require a
uniform distribution of an application.
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(a) IANA assignment on Jan. 27, 2005.
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(b) Empirical distribution of web servers.

Fig. 1. Uneven distribution of vulnerable hosts.

The remainder of this paper is structured as follows. Sec-
tion II provides the background on worm scanning methods,
vulnerable-host distribution, and random worm propagation
model. Section III characterizes the importance scanning strat-
egy through an analytical model and experiments. We further
discuss the defense strategy from the view of game theory in
Section IV, and conclude the paper in Section V.

II. PRELIMINARIES

A. Scanning Methods

A worm spreads by employing distinct scanning mecha-
nisms such as random, localized, and topological scanning
[11]. Random scanning selects target IP addresses at random
and is used by such famous worms as Code Red and Slammer.
Localized scanning preferentially scans for hosts in the “local”
address space and is used by Code Red II and Nimda worms.
Topological scanning relies on the “address” information con-
tained in the victim machine to locate new targets and is used
by Morris worm.

Some advanced scanning methods have been developed
in research community. For example, Weaver presented the
“hitlist” idea [13] to speed up the spread of worms at the
initial stage. There a list of potentially vulnerable machines
is built up beforehand and targeted first when the worm is
released. An extreme case for the hitlist-scanning worms is
called flash worms, where all vulnerable machines are gathered
into the list. The flash worms are considered to be the fastest
possible worms [12], as every worm scan can hit a vulnerable
host. One other method to improve the spread of worms is to
reduce the scanning space. Attackers can potentially achieve
this by using the information provided by BGP routing tables.
This type of worm is called “routable-scanning worm” [14]
or “routing worm” [17]. Zou et al. designed two types of
routing worms [17]. One type is based on class A (x.0.0.0/8)
address-allocations, and thus called “Class A routing worm”.
Such worm can reduce the scanning space to 45.3% of the

entire IPv4 address space. The other type is based on BGP
routing tables, and thus called “BGP routing worm”. Such
worm can reduce the scanning space to only about 28.6% of
the entire IPv4 address space. One other strategy that a worm
can potentially employ is DNS random scanning [3], where a
worm uses the DNS infrastructure to locate likely targets by
guessing DNS names instead of IP addresses. Such a worm
in an IPv6 Internet is shown to exhibit propagation speeds
comparable to that of an IPv4 random-scanning worm.

Most of these advanced worms can propagate far faster than
a traditional random-scanning worm. When these advanced
worms are studied, however, the vulnerable hosts are assumed
to be uniformly distributed in either the whole IPv4 address
or the scanning space. Hence the information on a vulnerable-
host distribution is not exploited by the worms.

B. Distribution of Vulnerable Hosts

The distribution of vulnerable hosts in the Internet is not
uniform. Figure 1(a) shows the assignment of the first byte of
IPv4 address space by the Internet Assigned Number Authority
(IANA) on January 27, 2005 [19]. There no hosts can exist in
the reserved or multicast address ranges. More importantly,
the distribution of vulnerable hosts is highly non-uniform
over the IPv4 address space that is registered. Consider web
servers as an example. Assume that a worm searches for
public accessible web servers as targets. We can estimate the
distribution of web servers as follows. We collected 13,866
IP addresses of web servers provided by the random URL
generator from UROULETTE (http://www.uroulette.com/) on
January 24, 2005. These addresses were then used to form an
empirical distribution, where

Pe(i) =
number of addresses with the first byte equal to i

total number of collected addresses
,

(1)
where i = 0, 1, · · · , 255. The results are shown in Figure
1(b) and match IANA assignment on IPv4. It is observed



that the distribution of web servers is far from uniform in the
address space that is routable. Statistical analysis of network
telescope observations also shows that the victims of Code Red
and Slammer worms have a highly non-uniform geographical
distribution [5], [6]. Moreover, DShield [18] data indicate that
the distributions of vulnerable hosts among prefixes follow a
power law [8].

C. Worm Propagation Model for Random-Scanning Worms

We now review worm propagation model as a preparation
for relating the rate of worm spread with the distribution of
vulnerable hosts. A simple model, known as susceptible →
infected (SI) model, has been used to model the spread of
random-scanning worms in various earlier works [11], [17],
[3]. It assumes that each host has only two states: susceptible
or infected. Once infected, a host remains infected.

In this paper, we adopt a discrete-time SI model, as im-
portance scanning (sampling) is usually performed in discrete
time [15]. In particular, we use Analytical Active Worm
Propagation (AAWP) model, which was developed by Chen et
al. in [1]. In the AAWP model, the spread of random-scanning
worms is characterized as following:

It+1 = It + (N − It)[1 − (1 − 1
Ω

)sIt ], (2)

where It is the number of infected hosts at time t (t ≥ 0); N
is the number of vulnerable hosts; s is the scanning rate of
the worm; and Ω is the scanning space. At t = 0, I0 hosts are
infected, representing the number of hosts on the hitlist.

When a worm begins to spread, It << N and sIt << Ω.
The AAWP model can be approximated by

It+1 ≈ It + N · sIt

Ω
= (1 +

sN

Ω
)It = (1 + α)It, (3)

where α = sN
Ω , called the infection rate [17]. Infection

rate represents the average number of vulnerable hosts that
can be infected per unit time by one infected host during
the early stage of worm propagation. Based on Equation
(3), It ≈ (1 + α)tI0, i.e., the number of infected hosts
increases exponentially. Therefore, to speed up the spread of
worms during the early stage, attackers should design effective
scanning methods to increase the infection rate. For instance,
a traditional random worm scans the whole IPv4 address
space and thus Ω = 232. The infection rate of this worm
is α0 = sN

232 . Comparatively, a BGP and a Class-A routing
worm can achieve faster infection rates with the same scanning
rate and the number of targets: α1 = sN

0.286×232 = 3.5α0 and
α2 = sN

0.453×232 = 2.2α0.

III. IMPORTANCE SCANNING

In this section, we first introduce the concept of importance
scanning by relating the infection rate with the vulnerable-host
distribution. We then model the spread of importance-scanning
worms. Finally, we compare the importance scanning with the
random and routable scanning through experiments.

A. Infection Rate

Let I(An) denote the vulnerability of an address An.

I(An) =
{

1, if address An is vulnerable to a worm;
0, otherwise.

Thus,
∑

An
I(An) = N . Let p(An) denote the true

vulnerable-host distribution, i.e., the probability that I(An) =
1.

p(An) =
I(An)

N
=

{
1
N , if I(An) = 1;
0, if I(An) = 0.

Let p∗(An) denote the probability that the worm scans
the address An. p∗(An) can be a uniform distribution as in
random-scanning worms or a non-uniform biasing distribution
as in flash worms. p∗(An) is chosen by an attacker. The
choice of the scanning distribution p∗(An) is essential to the
effectiveness of importance scanning. As we shall see, p∗(An)
depends on the true probability distribution p(An).

Let R be the number of hosts that can be infected per unit
time by one infected host during the early stage of worm
propagation. R can be expressed as

R =
s∑

n=1

I(An), (4)

where s is the scanning rate as the number of scans that an
infected host sends per unit time. Therefore, the infection rate
is given by

α = E∗[R] =
sX

n=1

E∗[I(An)] =
sX

n=1

X

An

I(An)p∗(An)

= N

sX

n=1

X

An

p(An)p∗(An) = sN
X

An

p(An)p∗(An), (5)

where E∗[·] denotes that the expectation is taken with respect
to the scanning distribution p∗(An). It is noted that

α ≤
s∑

n=1

∑
An

p∗(An) = s, (6)

for any p∗(An).
Hence the infection rate is strongly influenced by the choice

of the scanning distribution p∗(An). A choice of p∗(An)
determines a scanning strategy; and a good choice, in view of
an attacker, should maximize the infection rate α. Two special
cases have been observed on “choosing” p∗(An). The first case
is the random-scanning worms, where p∗(An) = 1

232 . Thus,
α = sN

232 = α0. The second case is the flash worms, where
p∗(An) = p(An). In this case, p∗(An) obtains the optimal
scanning strategy p∗opt(An), which leads to maxp∗(An){α} =
s. This means that every scan from the worm would hit a
vulnerable host.

One interpretation of p∗opt(An) suggests that a good scan-
ning strategy of a worm is to concentrate the scans in areas that
are more likely to find a vulnerable host. The vulnerable-host
probability distribution p(An), however, cannot be obtained
without probing the entire IP address space or getting a com-
plete database of parties to the vulnerable protocol. Therefore,
attackers may not acquire the entire knowledge of p(An).
However, partial knowledge can be obtained, e.g., aggregation
on the subspaces of IP addresses.



B. Group Distributions

We consider such partial information as the marginal of
p(An), referred to as group distributions. The group distri-
butions capture the statistics of groups of addresses, rather
than individual addresses. The vulnerable-host probability
distribution in groups is essentially the marginal of the true
distribution p(An). Many methods exist to form such groups of
addresses. For example, IP addresses can be grouped by using
the conventional 4-byte description. In [15], this approach
is applied to study importance sampling of the size of the
Internet. Here, we extract relevant groups in a more general
setting by defining the networks. In particular, we regard a
network as a group of IP addresses that can be identified by
such diverse methods as either the first byte of IP addresses
(/8 subnets) or IP prefixes in CIDR.

We assume that the Internet is composed of m networks. Let
Di (i = 1, 2, · · · ,m) denote the set of addresses in network i,
which has Ωi (Ωi ≥ 0) addresses. Thus,

∑m
i=1 Ωi = Ω = 232.

We define group distribution pg(i) (i = 1, 2, · · · ,m) as the
proportion of vulnerable hosts in network i, i.e.,

pg(i) =
Ni

N
=

∑
An∈Di

p(An), (7)

where Ni is the population of vulnerable hosts in network i.

The partition of networks reflects the knowledge that attack-
ers can obtain. For example, in one extreme case of random-
scanning worms, m = 1 and Ω1 = 232. In the other extreme
case of flash worms, m = 232 and Ωi = 1 (i = 1, 2, · · · , 232).
Another choice of partitioning networks is based on the first
byte of IP addresses (/8 subnets), where m = 28 and Ωi = 224

(i = 1, 2, · · · , 28). The amount of knowledge collected in the
latter case is between the cases of random worms and flash
worms.

Recall that the goal of importance scanning is to maximize
the infection rate. From Equation (5), we have the infection
rate

α = sN

m∑
i=1

∑
An∈Di

p(An)p∗(An). (8)

Refer the location of an address An that is in network i as
the interface, denoted by b (b = 0, 1, · · · ,Ωi − 1). Let pi(b)
denote the true probability of finding a vulnerable host with
the interface equal to b given that the host is in network i, i.e.,
pi(b) = I(An)

Ni
. Similarly, define group scanning distribution

p∗g(i) as the probability of scanning network i, and interface
scanning distribution p∗i (b) as the probability of scanning
interface b given that a scan hits network i for the scanning
distribution p∗(An). We can obtain that

p(An) = pg(i) · pi(b) (9)

p∗(An) = p∗g(i) · p∗i (b), (10)

where An is in the network i with interface equal to b. From

Equations (9) and (10), the infection rate becomes

α = sN
m∑

i=1

Ωi−1∑
b=0

pg(i)pi(b)p∗g(i)p
∗
i (b)

= sN

m∑
i=1

[
pg(i)p∗g(i)

Ωi−1∑
b=0

pi(b)p∗i (b)

]
. (11)

We assume that attackers can only obtain the information about
group distribution pg(i) and cannot acquire the knowledge
about interface distribution pi(b) further. Therefore, if a scan
hits the network i, the Ωi hosts in this network will be targeted
by that scan with the same likelihood, i.e., p∗i (b) = 1

Ωi
. Hence

Equation (11) yields

α = sN

m∑
i=1

pg(i)p∗g(i)
Ωi

. (12)

Equation (12) provides the relationships among the infec-
tion rate, the group distribution, and the group scanning
distribution. It is noted that α = sN

∑m
i=1 vip

∗
g(i) ≤

sN
∑m

i=1 maxk {vk}p∗g(i) = sN maxk {vk}, where vi =
pg(i)
Ωi

, referred to as the vulnerable-host density. The equality
holds when p∗g(j) = 1, j = arg maxk {vk}; or 0, otherwise.
This means that the optimal importance scanning of a worm
is to scan only the network with the largest vulnerable-host
density.

C. Worm Propagation Model for Importance-Scanning Worms

We now model the spread dynamics of importance-scanning
worms based on the information of group distribution.

At time t (t ≥ 0), let It,i denote the average number of
infected hosts in network i, and thus the total number of
infected hosts It =

∑m
i=1 It,i. The rate at which network i is

scanned is sItp
∗
g(i). As importance scanning worm employs

random scanning within each network, on the next time tick,
the number of infected hosts in network i can be derived by
the AAWP model, which is

It+1,i = It,i + (Ni − It,i)[1 − (1 − 1
Ωi

)sItp
∗
g(i)], (13)

where i = 1, 2, · · · ,m and t ≥ 0. I0,i is the number of
initially-infected hosts in network i. We assume that 1

Ωi
<< 1,

which yields

It+1,i ≈ It,i + sIt

(Ni − It,i)p∗g(i)
Ωi

. (14)

Summing over i = 1, 2, · · · ,m on both sides, we can obtain

It+1 = It + sIt

m∑
i=1

(
Ni − It,i

Ωi
)p∗g(i) (15)

≤ It + sIt

m∑
i=1

max
k

{Nk − It,k

Ωk
}p∗g(i) (16)

= [1 + s · max
k

{Nk − It,k

Ωk
}]It. (17)

The equality holds when

p∗g(j) =
{

1, j = arg maxk {Nk−It,k

Ωk
};

0, otherwise.



When t = 0, Ni >> It,i and then maxk {Nk−It,k

Ωk
} ≈

N maxk {vk}, which leads to α = sN maxk {vk}.
The above derivation results in the optimal importance-

scanning strategy, which maximizes the infection rate.
Optimal importance-scanning:
1) At each time step t, the worms first find out the subnet

that has the largest value of left vulnerable-host density,
i.e., j = arg maxk {Nk−It,k

Ωk
}.

2) Then all infected hosts concentrate on scanning this
subnet. That is, p∗g(j) = 1 and p∗g(i) = 0, ∀i �= j.

This optimal importance scanning, however, is not realistic.
First, N may not be known in advance, and thus Ni is
unknown. Secondly, the subnet that has the largest value of left
vulnerable-host density changes with time, and therefore the
optimal assignment of p∗g(i) is relevant to time. Even though
N is given, it requires each infected host to know It,i, which
leads to a lot of information exchange between infected hosts.
Nevertheless, the optimal importance scanning provides the
best scenario of importance scanning and the baseline for a
suboptimal selection of p∗g(i).

A simple strategy for suboptimal importance scanning is
to assume p∗g(i) = pg(i)/ΩiPm

j=1 pg(j)/Ωj
. That is, the probability of

worm scanning network i is proportional to the vulnerable-
host density for this network. If Ω1 = Ω2 = · · · = Ωm, then
p∗g(i) = pg(i). For this scanning strategy, the Equation (13)
becomes

It+1,i = It,i +(Ni − It,i)[1− (1− 1
Ωi

)
sIt

pg(i)/ΩiPm
j=1 pg(j)/Ωj ]. (18)

A suboptimal importance-scanning worm:
1) Before a worm is released, the attackers first obtain

the group distribution of vulnerable hosts pg(i), and
then encode the group scanning distribution p∗g(i) =

pg(i)/ΩiPm
j=1 pg(j)/Ωj

in the worm code.
2) At each time step t, the worm scans the network i with

the probability p∗g(i).

D. Experiments

How much does the importance scanning help a worm
in speeding up the propagation? We employ the model in
Equation (13) to study the propagation due to the optimal and
suboptimal importance-scanning strategies, and compare them
with routing and random worms.

To implement the model in Equation (13), we need to
obtain the group distribution pg(i). Here we use the web-server
distribution as an example of vulnerable-host distribution. In
other words, we assume that worms attack the vulnerable hosts
that have the same group distribution as that of the web server.
The empirical distribution pe(i) (defined by Equation (1)) is
expected to accurately reflect the relative distribution of the
number of web servers as a function of the first byte values.
Hence, we assume

pg(i) = pe(i). (19)

Similar approach is also applied in [15].
The parameters we use in importance-scanning worms are

comparable to those in Code Red and Slammer worms for

evaluating the propagation. Code Red worm has a vulnerable
population N = 360, 000 and a scanning rate s = 358 per
minute [16]. We then refer such importance-scanning worm
as the importance-scanning (IS) Code Red. Figure 2(a) shows
how the propagation due to importance-scanning Code Red
compares with those of random and BGP routing Code Red,
assuming a hitlist of 10 (i.e., I0 = 10). The importance-
scanning Code Red greatly increase their spreading speed by
using the information on the vulnerable-host distribution. The
optimal importance-scanning Code Red is able to infect 80%
vulnerable hosts in as few as 38 minutes, while the BGP rout-
ing Code Red needs 113 minutes. The suboptimal importance-
scanning Code Red spreads slower than the optimal one, but
only uses 60 minutes to infect the same number of hosts.

It is noted that when most of the vulnerable hosts are
infected, the spread of suboptimal importance-scanning Code
Red slows down. This is because the suboptimal strategy uses
the same group scanning distribution all the time. As the
infected hosts become saturated, the network that initially has
more vulnerable hosts has actually a fewer vulnerable ma-
chines. To overcome this, the suboptimal importance scanning
can choose to switch to routable scanning when there are a few
vulnerable hosts left. Figure 2(b) shows results for the same
experiments, assuming a hitlist of 13,866, which is the number
of web servers collected from UROULETTE. The suboptimal
importance scanning switches to Class A routable scanning
when 80% vulnerable hosts are infected. Compared with the
propagation of a BGP routing worm, the importance-scanning
worms spread out faster before the victim population becomes
saturated.

Figure 2(c) shows the propagation comparison among an op-
timal importance-scanning Slammer, a suboptimal importance-
scanning Slammer, a Class A routing Slammer, and a random
Slammer, with the parameters N = 75, 000, s = 4, 000
/second, and I0 = 10 as in [3]. The suboptimal importance-
scanning Slammer can propagate nearly twice faster than the
Class A routing Slammer.

In regard of storage requirement for group distribution
information, each pg(i) needs 4 bytes and each /8 prefix
needs 1 byte. Therefore, the total number of bytes added is
5 × 256 = 1280. We can reduce this payload by removing
the entries with pg(i) = 0, where i = 0, 1, · · · , 255. Since
there are only 102 entries with non-zero pg(i) according to
the empirical distribution pe(i) in Figure 1(b), the table can be
stored in a 102× 5 = 510 bytes payload. Hence, the scanning
rate of importance-scanning worms will not decrease much.

IV. GAME THEORY FOR ATTACKERS AND DEFENDERS

When an application is introduced to the Internet, defenders
can choose how to deploy this application in networks. That
is, the group distribution pg(i) can be controlled by the
defenders. Then there would be a game between attackers
and defenders. The attackers attempt to maximize infection
speed (characterized by infection rate α) by choosing the
optimal group scanning distribution p∗g(i), while the defenders
endeavor to minimize worm propagation speed by customizing
the group distribution pg(i). Thus, a minmax strategy for the
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Fig. 2. Code Red and Slammer worms propagation comparisons.

defenders and a maxmin strategy for the attackers lead to
optimal strategies and value in Equation (12):

αopt = min
pg(i)

max
p∗

g(i)
{α} = max

p∗
g(i)

min
pg(i)

{α}. (20)

This is a classical two-person zero-sum game [7]. Since the
optimal choice of p∗g(i) is

p∗g(j) =
{

1, j = arg maxk {vk};
0, otherwise,

which leads to α = sN maxk {vk}, pg(i) needs to minimize
maxk {vk}. This yields v1 = v2 = · · · = vm = 1

Ω

and pg(i) = Ωi

Ω . That is, the defenders should deploy the
application uniformly in the entire IP-address space.

V. CONCLUSIONS

In order to defend effectively against Internet worms, we
need to study potential scanning techniques that attackers may
employ. In this paper, we present a new scanning method
called importance scanning, which can use vulnerable-host
distribution information to increase worm propagation speed.
This scanning strategy can be combined with other scanning
methods such as hitlist scanning. It is noted that when the
naming distribution information is exploited, the importance
scanning can also be applied to DNS worms [3], which is
worth further investigating. Moreover, when IPv4 is updated to
IPv6, an importance-scanning worm will not be slowed down
much if vulnerable hosts are still distributed in a clustered
fashion. A game theory approach suggests that the best strat-
egy for defenders is to evenly distribute the applications in the
entire address space.
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