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Motivation
- Speaker Verification-Systems

Speaker verification systems are important to apply human voice as biometrics
Accurately identify a legitimate user
Avoid illegal access
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There are many attacks targeted on the speaker verification systems.
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There are many attacks targeted on the speaker verification systems.
Attacks against Speaker Verification Systems

SV system
Target =
Adversarial attack 9 /
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Machine learning or deep learning models o)
Most dangerous Adversarial Attack System
Very difficult to detect and defend /\
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Motivation
- Adversarial Attacks

Attack the weakness of machine learning and deep learning models
(Goodfellow, Shlens, and Szegedy ICLR 2015)
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G. Chen, S. Chen, L. Fan, X. Du, Z. Zhao, F. Song and Y. Liu, "Who is Real Bob? Adversarial
Attacks on Speaker Recognition Systems," in IEEE Symposium on Security and Privacy, San
Francisco, CA, USA, 2021

\ Algorithm 3.3 FakeBob Attacks
One of adversarial attacks on SV systems

Input: an audio signal array, threshold of target SV system

N99% ASR Output: an adversarial audio
Require: Threshold of target SV system 6, Audio signal array A, Maximum

iteration m, Score function S, Gradient decent function f;, Clip function £,

Attacker Original Audio ﬂ

Learning rate Ir, Sign function f;;

: _ 1. begin

Attacker Adversarial Audio G h 2 adver « A
3: fori=0; i<m; i+ +:
4. score « S(adver)
o1 if score = 0:
6: return adver
7 end if
8: adver « f.(adver — Ir X fg., (fg(adver)))
9: end for
10: end




Motivation
- Perturbations

Magnitude
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Noise-like

"ll" — T Adversarial Sample

Pertx Denoise it!
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Our Proposed Defense System
- Goal of Our Approaches
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Simple Light weight Effective
Easy to implement Low computation load Greatly increase the
Compatible with any Real-time task adversarial processing time

existing SV system Reduce the attack success

Modalized rate



Our Proposed Defense System
- Defense Systems

Plugin functions
Denoising
Noise-Adding
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Our Proposed Defense System
- Denoising Plugin Effect

Referring from: T. Sainburg, "timsainb/noisereduce: v1.0," Zenodo, 2019. [Online]. Available:
https://github.com/timsainb/noisereduce
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https://github.com/timsainb/noisereduce

Our Proposed Defense System
- Noise-Adding Plugin Effect
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Experiments
- Setup

* Environment * Adversarial Attack
Google Cloud Platform FakeBob
Local GPU server * Audio dataset

* SV systems LibriSpeech
GMM
I-Vector

* Tools

Kaldi speech recognition toolkit
Pre-trained models from VoxCeleb 1



Experiments
- Efficiency Evaluation
(Equal Error Rate)

EER = CER = FAR; = FRRj,where Threshold(FAR;) = Threshold(FRR;)
Crossover Error Rate FAR FRR
False Acceptance Rate

False Rejection Rate

Errors

CER

Good Performance, low EER
Bad Performance, high EER

Sensitivity



Experiments
- Normal Operations in GMM

n EER (%) Processmngme (sec)

Original 1.05
Denoising 0.001 1.61 30.67
Denoising 0.002 2.95 30.41
Denoising 0.005 3.36 30.79
Noise-Adding 0.001 1.21 19.34
Noise-Adding |0.002 1.92 19.78

Noise-Adding 0.005 3.94 20.31



Experiments
- Normal Operations in |-Vector

n EER (%) Processing Time (sec)

Original 433.45
Denoising 0.001 0.15 447.37
Denoising 0.002 0.05 447.82
Denoising 0.005 0.49 446.20

Noise-Adding 0.001 0.44 435.35
Noise-Adding |0.002 0.39 435.89

Noise-Adding 0.005 1.14 435.51



Experiments
- Against FakeBob Attacks in GMM

Avg lterations Avg Time (sec) Avg ASR (%)

Original 0 23.00 158.68 100.00
Denoising 0.001 18.90 192.02 77.20
Denoising 0.002 22.85 235.96 56.05
Denoising 0.005 22.30 235.78 51.00

Noise-Adding 0.001 92.6 614.92 24.35
Noise-Adding |0.002 604.95 3992.88 5.20

Noise-Adding

694.95 4350.35

Max iterations = 1000

4.10




Experiments
- Against FakeBob Attacks in |-Vector

- Avg lterations | Avg Time (sec) Avg ASR (%0)

Original 168.88 6080.47 95.00
Denoising 0.001 97.40 3702.36 55.68
Denoising 0.002 100.58 3825.02 38.63
Denoising 0.005 344.53 13130.24 17.73

Noise-Adding 0.001 556.33 20041.00 8.98
Noise-Adding [ 0.002 918.23 33017.30 0.50

Noise-Adding 0.005 921.48 33103.39 1.03

Max iterations = 1000



Simple
Modalized as a small
plugin

Does not need to
change the internal
structure of an
existing SV system

Light weight
Low computation load

Minor effect on EER

Effective

Reduce the targeted ASR from 100%
t0 5.2% in GMM and 0.5% in i-vector

Slow down the adversarial attack
processing speed 25 times in GMM
and 5.43 times in i-vector



Future Works

Future works
X-vector
D-vector

Other type of noise like rustle noise ’
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