Defending Against Adversarial Attacks in Speaker Verification Systems

Li-Chi Chang, Zesheng Chen, Chao Chen, Guoping Wang, and Zhuming Bi

Purdue University Fort Wayne
Outlines

Motivation
Our Proposed Defense System
Experiments
Conclusions and Future Works
Motivation - Speaker Verification Systems

Speaker verification systems are important to apply human voice as biometrics:
- Accurately identify a legitimate user
- Avoid illegal access

Speaker Verification Systems
- GMM
- I-Vector
- D-Vector
- X-Vector
Motivation
- Attack Against SV Systems

There are many attacks targeted on the speaker verification systems.

Attacks against Speaker Verification Systems
Replay attack
Cloning attack
Adversarial attack
Motivation - Adversarial Attack Against SV Systems

There are many attacks targeted on the speaker verification systems.

Attacks against Speaker Verification Systems
- Replay attack
- Cloning attack
- Adversarial attack

Adversarial attack
- Machine learning or deep learning models
- Most dangerous
- Very difficult to detect and defend
Motivation
- Adversarial Attacks

Attack the weakness of machine learning and deep learning models (Goodfellow, Shlens, and Szegedy ICLR 2015)

High Attack Success Rate (ASR)
Motivation
- FakeBob Attack

One of adversarial attacks on SV systems

~99% ASR

Algorithm 3.3 FakeBob Attacks

| Input: an audio signal array, threshold of target SV system |
| Output: an adversarial audio |

Require: Threshold of target SV system θ, Audio signal array A, Maximum iteration m, Score function S, Gradient decent function f_G, Clip function f_c, Learning rate lr, Sign function f_{sign}

1: begin
2: $adver \leftarrow A$
3: for $i = 0; i < m; i + +:$
4: $score \leftarrow S(adver)$
5: if $score \geq \theta$:
6: return $adver$
7: end if
8: $adver \leftarrow f_c(adver - lr \times f_{sign}(f_G(adver)))$
9: end for
10: end
Motivation
- Perturbations
Motivation
- Intuition

Noise-like

- - - - - - - -

Adversarial Sample

Denoise it!

Perturbations

Unique

- - - - - - - -

Attacker’s voice

Adversarial Sample

Noise-add (Distort) it!

Perturbations
Our Proposed Defense System - Goal of Our Approaches

Simple
- Easy to implement
- Compatible with any existing SV system
- Modalized

Light weight
- Low computation load
- Real-time task

Effective
- Greatly increase the adversarial processing time
- Reduce the attack success rate
Our Proposed Defense System
- Defense Systems

Plugin functions
Denoising
Noise-Adding
Our Proposed Defense System - Denoising Plugin Effect

Our Proposed Defense System - Noise-Adding Plugin Effect

(a) $\sigma = 0.001$

Noise-added Audio

Original Audio

Difference Between Noise-added Audio and Original Audio

(a) $\sigma = 0.001$
Experiments - Setup

• Environment
 Google Cloud Platform
 Local GPU server

• SV systems
 GMM
 i-Vector

• Tools
 Kaldi speech recognition toolkit
 Pre-trained models from VoxCeleb 1

• Adversarial Attack
 FakeBob

• Audio dataset
 LibriSpeech
Experiments
- Efficiency Evaluation (Equal Error Rate)

EER = CER = FAR_i = FRR_j, where Threshold(FAR_i) = Threshold(FRR_j)

Crossover Error Rate
False Acceptance Rate
False Rejection Rate

Good Performance, low EER
Bad Performance, high EER
Experiments

Normal Operations in GMM

<table>
<thead>
<tr>
<th>Plugin</th>
<th>σ</th>
<th>EER (%)</th>
<th>Processing Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0</td>
<td>1.05</td>
<td>18.44</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.001</td>
<td>1.61</td>
<td>30.67</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.002</td>
<td>2.95</td>
<td>30.41</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.005</td>
<td>3.36</td>
<td>30.79</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.001</td>
<td>1.21</td>
<td>19.34</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.002</td>
<td>1.92</td>
<td>19.78</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.005</td>
<td>3.94</td>
<td>20.31</td>
</tr>
</tbody>
</table>
Experiments
- Normal Operations in I-Vector

<table>
<thead>
<tr>
<th>Plugin</th>
<th>σ</th>
<th>EER (%)</th>
<th>Processing Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0</td>
<td>0</td>
<td>433.45</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.001</td>
<td>0.15</td>
<td>447.37</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.002</td>
<td>0.05</td>
<td>447.82</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.005</td>
<td>0.49</td>
<td>446.20</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.001</td>
<td>0.44</td>
<td>435.35</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.002</td>
<td>0.39</td>
<td>435.89</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.005</td>
<td>1.14</td>
<td>435.51</td>
</tr>
</tbody>
</table>
Experiments

- Against FakeBob Attacks in GMM

<table>
<thead>
<tr>
<th>Plugin</th>
<th>σ</th>
<th>Avg Iterations</th>
<th>Avg Time (sec)</th>
<th>Avg ASR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0</td>
<td>23.00</td>
<td>158.68</td>
<td>100.00</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.001</td>
<td>18.90</td>
<td>192.02</td>
<td>77.20</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.002</td>
<td>22.85</td>
<td>235.96</td>
<td>56.05</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.005</td>
<td>22.30</td>
<td>235.78</td>
<td>51.00</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.001</td>
<td>92.6</td>
<td>614.92</td>
<td>24.35</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.002</td>
<td>604.95</td>
<td>3992.88</td>
<td>5.20</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.005</td>
<td>694.95</td>
<td>4350.35</td>
<td>4.10</td>
</tr>
</tbody>
</table>

Max iterations = 1000
Experiments
- Against FakeBob Attacks in I-Vector

<table>
<thead>
<tr>
<th>Plugin</th>
<th>σ</th>
<th>Avg Iterations</th>
<th>Avg Time (sec)</th>
<th>Avg ASR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0</td>
<td>168.88</td>
<td>6080.47</td>
<td>95.00</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.001</td>
<td>97.40</td>
<td>3702.36</td>
<td>55.68</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.002</td>
<td>100.58</td>
<td>3825.02</td>
<td>38.63</td>
</tr>
<tr>
<td>Denoising</td>
<td>0.005</td>
<td>344.53</td>
<td>13130.24</td>
<td>17.73</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.001</td>
<td>556.33</td>
<td>20041.00</td>
<td>8.98</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.002</td>
<td>918.23</td>
<td>33017.30</td>
<td>0.50</td>
</tr>
<tr>
<td>Noise-Adding</td>
<td>0.005</td>
<td>921.48</td>
<td>33103.39</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Max iterations = 1000
Conclusions

Simple
Modalized as a small plugin
Does not need to change the internal structure of an existing SV system

Light weight
Low computation load
Minor effect on EER

Effective
Reduce the targeted ASR from 100% to 5.2% in GMM and 0.5% in i-vector
Slow down the adversarial attack processing speed 25 times in GMM and 5.43 times in i-vector
Future Works

Future works
X-vector
D-vector
Other type of noise like rustle noise
Thank You