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Abstract—In smart home, voice control becomes a main 

interface between users and smart devices. To make voice 

control more secure, speaker verification systems have been 

researched to apply human voice as biometrics to accurately 

identify a legitimate user and avoid illegal access. In recent 

studies, however, it has been shown that speaker verification 

systems are particularly vulnerable to adversarial attacks. In 

this work, we attempt to design and implement a defense system 

that is simple, light-weight, and effective against adversarial 

attacks for speaker verification. Specifically, we study two 

opposite operations to preprocess input audios in speaker 

verification systems against adversarial attacks: denoising that 

attempts to remove or reduce perturbations and noise-adding 

that adds small Gaussian noises to an input audio. We show 

through experiments that both methods can significantly 

degrade the performance of a state-of-the-art adversarial 

attack. Specifically, it is shown that denoising and noise-adding 

can reduce the targeted attack success rate of the attack from 

100% to only 56% and 5.2%, respectively. Moreover, noise-

adding can slow down the attack 25 times in speed and only has 

a minor effect on the normal operations of a speaker verification 

system. 

Keywords—speaker verification, adversarial attack, defense 

system, denoising, and noise-adding 

I. INTRODUCTION 

With the advance of the technologies of Internet of Things, 
smart devices or virtual personal assistants at home, such as 
Google Assistant, Apple Siri, and Amazon Alexa, have been 
widely used to control and access different objects like door 
lock, blobs, air conditioner, and even bank accounts, which 
makes our life convenient. These smart home devices can be 
accessed and controlled through different methods, such as 
position detection, habit record, and most importantly, voice 
control. Because of its convenience and ease of operation, 
voice control becomes a main interface between users and 
smart devices. 

To make voice control more secure, speaker verification 
systems have been widely studied and attempt to apply human 
voice as biometrics to distinguish people, in a similar way as 
fingerprint and iris recognition. Compared with other 
verification methods, speaker verification has the advantages 
of being hand free and distance flexible. That is, speaker 
verification does not require a person to have physical contact 
with smart devices and is able to operate within a certain 
distance. 

However, speaker verification systems have been facing 
many different attacks that attempt to compromise the 
integrity of the systems to allow illegal access from attackers 
[1]. The main attacks include replay attacks [2], voice cloning 
attacks [3], and adversarial attacks [4]. Among all attacks, 
adversarial attacks are the most dangerous and very difficult 
to detect and defend [5]. In such an attack, small well-
designed perturbations are added to a clean audio from an 
illegal speaker to form the adversarial audio, which is barely 
perceptible by humans. That is, a person can hardly 
distinguish between the original clean audio and the 
adversarial audio when hearing them. However, the 
adversarial audio can be falsely accepted by the speaker 
verification system. As shown in [5], FakeBob adversarial 
attacks can achieve at least 99% targeted attack success rate 
on both open source and commercial speaker verification 
systems. That is, more than 99% of generated adversarial 
audios can be falsely accepted by the speaker verification 
systems. On the other hand, many defense systems that 
perform well against adversarial attacks for the images in the 
area of the image classification problem, such as local 
smoothing [6], quantization [6], and temporal dependency 
detection [6], cannot defeat the FakeBob attacks.  

As a result, an important research question arises: How can 
we effectively and efficiently defend against adversarial 
attacks such as FakeBob? The goal of this project is to design 
and implement a defense system that is simple, light-weight, 
and effective against adversarial attacks. Specifically, the 
defense system should be compatible with any existing 
speaker verification system and should not require any change 
to the internal structure of the currently used speaker 
verification system. Moreover, the proposed system should 
only slightly increase the computation load of the speaker 
verification system. Most importantly, the defense system 
should be able to significantly slow down an attacker to 
generate a successful adversarial audio or greatly reduce the 
attack success rate. It is equally important that the defense 
method should only slightly affect the normal operations of a 
speaker verification system. 

To achieve the goal of the project, we start with studying 
the adversarial audio in both the time domain and the Mel 
spectrogram [7]. We find that the perturbations are similar to 
white noises, but they are not random and are intentionally 
designed to fool the speaker verification systems. Based on 
these observations, our intuition is that if the perturbations in 



an adversarial audio can be removed or modified, adversarial 
attacks would be less effective against the speaker verification 
system. That is, before an input audio is provided to a 
verification system, a plugin function is applied to this input 
audio to preprocess it, in order to reduce the effect of 
perturbations from attacks. In this work, we consider two 
different plugin functions: denoising and noise-adding. The 
basic idea of the denoising function is to remove or reduce the 
perturbations or noises in input audios; and the 
implementation of denoising is based the work from [8]. The 
goal of the noise-adding is to append some small Gaussian 
noises to input audios to perturb adversarial audios, so that 
adversarial attacks would lose or reduce the ability to mislead 
a speaker verification system. Denoising and noise-adding are 
indeed opposite operations. Through experiments using the 
state-of-the-art speaker verification systems such as the 
Gaussian mixture model (GMM), we find that both methods, 
especially the noise-adding method, can significantly reduce 
the attack success rate of FakeBob. 

There have been some works on the detection and defense 
methods against adversarial attacks in speaker verification 
systems. For example, a separate neural network has been 
proposed to detect the appearance of adversarial samples [9] 
[10]. Moreover, Wu et al. proposed to use voting to against 
adversarial examples [11]. However, the implementations of 
these detection or defense methods are not simple nor light-
weight, and require significant computations. Moreover, it is 
not clear how these defense methods perform against the state-
of-the-art adversarial attacks such as FakeBob.  

The most relevant work to our approach was recently 
presented in [12]. This work also studied how to use small 
noises to counteract query-based black-box adversarial 
attacks. However, there are some key differences between 
their work and our work: (1) The work in [12] focuses on the 
image classification problem, whereas we study the speaker 
verification area. Images and audios are different signals and 
have distinct characteristics. As shown in [5], many defense 
systems that perform well for images cannot be applied to 
audios. (2)  Image classification and speaker verification 
usually apply different machine learning or deep learning 
methods. For example, an image classifier uses the classic 
convolutional neural network (CNN) model, whereas a 
speaker verification system applies the GMM. The same 
defense mechanism may have different performance on 
distinct machine learning models. (3) The work in [12] aims 
at untargeted adversarial attacks, whereas our work focuses on 
targeted adversarial attacks. 

We summarize our main discoveries and contributions in 
the following: 

• We find and show that the perturbations in an 
adversarial audio are very small and are similar to 
white noises, using the time domain waveform and the 
Mel spectrogram. On the other hand, these 
perturbations are not random, but are intentionally 
designed to fool the speaker verification systems. 

• We propose a defense framework that is simple, light-
weight, and effective against adversarial attacks in 
speaker verification systems. 

• We find that the denoising function is able to reduce or 
remove the perturbations. As shown in our experiments 
based on FakeBob [5] against a GMM speaker 
verification system, denoising can reduce the targeted 
attack success rate from 100% to 56%. A downside of 
denoising is that in the GMM system, it adds 
nonnegligible processing time. 

• We discover that the noise-adding method performs 
much better than the denoising function. For example, 
we show that noise-adding can further reduce the 
targeted attack success rate of FakeBob to 5.2% in the 
GMM system. Moreover, the speed for FakeBob to 
generate an adversarial audio is slowed down 25 times 
under the impact of this defense. On the other hand, the 
processing time of the noise-adding function is very 
small and can be negligible. Furthermore, noise-adding 
only slightly affects the normal operations of a speaker 
verification system. Therefore, we believe that such a 
simple solution can be applied to any speaker 
verification system against adversarial attacks. 

The remainder of this paper is structured as follows. 
Section II provides the background on a speaker verification 
system and adversarial attacks (i.e., FakeBob) against speaker 
verification systems. Section III presents our proposed 
defense framework and discusses two plugin functions, i.e., 
denoising and noise-adding. Section IV evaluates the 
performance of our proposed defense system on normal 
operations of speaker verification systems and against 
FakeBob adversarial attacks. Finally, Section V concludes our 
effort and discusses the future work. 

II. BACKGROUND 

A. Speaker Verification Systems 

Speaker verification (SV) systems have been widely used 

to identify a person through their voice. In our work, we focus 

on score-based SV systems, which most state-of-the-art SV 

systems belong to. A score-based SV system contains two 

phases: speaker enrollment and speaker recognition, as 

shown in Figure 1. 

 

Fig. 1. A Score-Based Speaker Verification System 

In the speaker enrollment phase, a speaker needs to 

provide the identifier and their audio clips. The SV system 

transfers the speaker’s voice into a fixed length low 

dimensional vector called speaker embedding. Basically, the 

speaker embedding represents the features of a speaker’s 

voice and is used to calculate the similarity between two 

audio clips. Different SV systems use different approaches to 

obtain speaker embedding. The popular SV systems include 

i-vector [13], GMM [14], d-vector [15], and x-vector [16]. In 

this work, we focus on GMM and i-vector, since they have 

been widely used in real life and applied as the baseline for 

comparisons. Here, we use the notation SER to refer to the 

vector of speaker embedding of the enrolled or registered 

speaker. 

Besides obtaining the speaker embedding, the enrollment 

phase attempts to find a proper threshold for this speaker. 

Such a threshold is a key consideration for a score-based SV 

system. To understand the importance of the threshold, we 

first look at the recognition phrase. As shown in Figure 1, 

when a test audio clip is provided to the SV system, it 

abstracts the speaker embedding of this audio, which is 



referred by SET. Then, the SV system calculates the similarity 

between vector SER and vector SET, and obtains a similarity 

score. A higher score reflects more similarity between two 

vectors of speaker embedding. Finally, the similarity score is 

compared with the threshold. If the score is higher than or 

equal to the threshold, the system will accept the test audio 

clip and treat the speaker as the enrolled user. Otherwise, the 

system will reject the access of the speaker.  

There are two basic false cases for a SV system: (1) 

accepting a speaker who is not the enrolled user, and (2) 

rejecting the enrolled speaker. Usually, we call the speaker 

who is not enrolled as the illegal speaker or illegal user. For 

these two cases, we use the false acceptance rate (FAR) and 

the false rejection rate (FRR) to measure. Specifically, FAR 

and FRR are defined as follows: 
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 For an ideal SV system, both FAR and FRR are 0. 

However, in a real SV system, it is difficult to make them 

both 0. There is tradeoff between them. That is, in general 

when one of FAR and FRR decreases, the other will increase. 

Intuitively, when the threshold increases, it becomes more 

difficult for an audio clip to be accepted. As a result, FAR 

will decrease while FRR will increase. A proper threshold, 

which is used in our work, is to use the value when FAR and 

FRR are equal. Conventionally, when FAR is equal to FRR, 

the rate is called the equal error rate (EER) [17]. 

To find the EER and the corresponding threshold, both 

enrolled speaker audio clips and illegal speaker audio clips 

need to be provided to the enrollment phase. A SV system 

calculates the similarity scores for all provided audio clips 

and then finds the threshold that can lead to the EER.  

B. Adversarial Attacks on Spekaer Verification Systems 

The study of adversarial attacks started from the research 

of applying deep learning to the image classification problem. 

In their original work, Szegedy and Goodfellow et al. showed 

that deep learning is particularly vulnerable to adversarial 

examples attacks [4] [18]. For example, after added very 

small perturbations, the image of panda can be recognized as 

gibbon with 99.3% confidence by a popular deep-learning 

based classifier. Later, researchers realized that adversarial 

attacks can be applied to not only deep learning, but also other 

machine learning methods. Interested readers can refer to the 

paper [19] for a comprehensive survey on adversarial attacks.  
Adversarial attacks and defenses have not been 

comprehensively and systematically studied in the field of SV 
systems yet. In the context of a SV system, adversarial attacks 
attempt to make the SV system falsely accept a well-designed 
illegal audio, which is called an adversarial audio. 
Specifically, the adversarial audio is an original illegal clean 
audio with small perturbations, often barely perceptible by 
humans. However, such perturbations lead the SV system to 
falsely accept the audio. Let x be an original audio from an 
illegal user, p be the perturbation vector with the same length 
as x, and x’ be the adversarial audio. Then,  �′ � � � �.   (3) 

When hearing the two audios of x and x’, humans may notice 
no or little difference between them. However, from the 

perspective of the SV system, it will reject x, but falsely accept 
x’.  

 To make sure that the adversarial audio is not noticed or 
detected by humans, the perturbations are usually very small 
and constrained by a perturbation threshold, �. That is, 

   � � ���, �!, … , ��#, $%&'&	 ( �	 ) �� ) �, 1 + , + -				(4) 

Choosing the value of �  is an important consideration for 
adversarial attacks. A larger value of � makes the attack easier 
to succeed, but meanwhile causes it more perceptible by 
humans.  

In our work, we study the FakeBob attack [5] and how to 
defend against it, since it is the state-of-the-art adversarial 
attack against SV systems including GMM, i-vector, and x-
vector. Specifically, the FakeBob attack is a block-box attack 
that does not need to know the internal structure of a SV 
system. Moreover, as shown in [5], FakeBob achieves at least 
99% targeted attack success rate (ASR) on both open source 
and commercial SV systems. ASR can be defined as the 
following: 
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Figure 2 shows the basic process of FakeBob adversarial 

attacks. 

 

Fig. 2. The Process of FakeBob Adversarial Attacks 

Basically, FakeBob applies the basic iterative method 

(BIM) [20] and the natural evolution strategy (NES) [21] to 

generate the adversarial audio. That is, the attack takes 

multiple iterations to get the final adversarial audio (e.g., x’) 

that attempts to minimize the following loss function or 

objective function 0123 � 45�67 ( .123, 09,  (6) 

where y is an input audio, 7 is the threshold of the SV system, 

and .123 is the score function that calculates the score of an 

input audio for SV. FakeBob solves the optimization problem 

by estimating the threshold 7 and iteratively finding the input 

audio that reduces 0123 , through the method of gradient 

decent over the input audio. That is, it applies the following 

gradient decent function :; 123 � <�0123.   (7) 

Note that here the gradient decent is different from the back-

propagation that is widely used in deep learning, and the 

differentiation is based on input audios, instead of the weights 

of the machine learning model. 

Define a sign function :����123  in the following way: 

For each element (i.e., yi) in the vector y, a sign function gets 

the sign of the value of each element in the vector, i.e., 
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Moreover, assume ��  (1 + , + -) is a signal in the original 

clean audio (i.e., x) from an illegal speaker, ��� (1 + , + -) is 

the corresponding signal in the adversarial audio at kth 

iteration (i.e., ��), and ε is the perturbation threshold shown 

in Equation (4). Based on the assumption in Equation (4), a 

clip function is defined as follows 

:�?���@ � = ��� ,					,:	A��� ( ��A ) ��� � �, ,:	��� B �� � ��� ( �,			,:	��� + �� ( �

             (9) 

Using the above functions, FakeBob updates the input 

audio through the following iteration  

�� � :�1��C� ( D' E :����1:;1��C�333            (10) 

where lr is the learning rate. The FakeBob attack is 

summarized in Algorithm 1. 

Algorithm 1 FakeBob Attacks 

Input: an audio signal array, threshold of target SV system 

Output: an adversarial audio 

Require: threshold of target SV system F, audio signal array G, 

maximum iteration H, score function S, gradient decent function IJ, clip function IK , learning rate LM, and sign function INOPQ 

1: R&S,- 

2:     5TU&' ← � 

3:     :W'	, � 0; 		, ) 4; 		, � �:	 
4:         Z[W'& ← .15TU&'3 

5:         ,:	Z[W'& B 7: 
6:             '&\]'-	5TU&' 

7:         &-T	,: 

8:         5TU&' ← :�15TU&' ( D' E :����1:;15TU&'333 

9:     &-T	:W' 

10: &-T 
 

To better understand the FakeBob attack, we look into one 

example of an adversarial audio in both the time domain and 

the Mel spectrogram. Specifically, applying the FakeBob 

with the perturbation threshold of 0.002, we obtained an 

adversarial audio that is falsely accepted by the GMM SV 

system. Figure 3 shows the time waveform of the adversarial 

audio and the perturbations (i.e., p in Equation (3)) in both 

the time domain and the Mel spectrogram. It can be seen that 

the perturbations used in the FackBob attack are very small 

(i.e., (0.002	 ) �� ) 0.002) and are similar to white noises 

(i.e., the perturbations are everywhere with the similar color 

in the Mel spectrogram). On the other hand, these 

perturbations are not random, but are intentionally designed 

to fool the SV system.  

III. PROPOSED DEFENSE SYSTEM 

In this section, we propose a defense system against 
adversarial attacks in SV systems. Specifically, we first 
introduce the design goals of a defense system. Next, we 
describe our proposed defense system based on the 
observations from the adversarial audio. Finally, we provide 
the implementation details of the defense system in two 
different approaches: denoising that attempts to remove the 
perturbations in adversarial audios and noise-adding that 
attempts to perturb adversarial audios. 

A. Design Goals of a Defense System 

To counteract the adversarial attacks in a SV system, we 

attempt to design and implement a defense system that 

achieves the following goals: 

• Simplicity. The defense system is easy to implement 

and can be compatible with an existing SV system. 

That is, it does not require any change to the internal 

structure of the currently used SV system. 

• Light weight. It does not significantly increase the 

computation load of the SV system. The defense 

method only slightly increases the processing time for 

an input audio. 

• Effectiveness. The defense algorithm should be able 

to greatly increase the time for an attacker to generate 

a successful adversarial audio or significantly reduce 

the ASR of adversarial attacks such as FakeBob. On 

the other hand, the defense method should only 

slightly affect the normal operations of a SV system, 

such as the EER. 

B. A Defense System 

To achieve these goals, we design a defense system based 
on the observations from an adversarial audio. Specifically, as 
shown in Figure 3 in Section II, the adversarial audio is simply 
the clean illegal audio with well-designed perturbations that 
are similar to white noises. If such perturbations can be 
removed or modified, adversarial attacks would lose the 
efficiency against the SV system. Based on this intuition, we 
propose a defense system as shown in Figure 4. Comparing 
Figure 4 with Figure 1, it can be seen that we add an additional 
module, i.e., a plugin function, before the recognition module 
to a SV system. Such a plugin function is used to preprocess 
an input audio to either forcefully remove the perturbations or 
intentionally modify the perturbations. As a result, in the 
following sections we will discuss two options for the plugin 
function: denoising and noise-adding. 

It can be seen that the proposed defense system is 

compatible with an existing SV system and can be applied to 

any SV system. It does not require to change the internal 

structure of a SV system. Moreover, the overhead of the 

defense method is only on the plugin function. If such a 

(a) Adversarial Audio in Time Domain (b) Perturbations in Time Domain (c) Perturbations in Mel Spectrogram 

Fig. 3. An Advesarial Audio in the Time Domain and Its Perturbations in Both the Time Domain and the Mel Spectrogram 



plugin is light weight, it will not introduce much additional 

computation to the SV system. Furthermore, the main goal of 

the plugin function is to modify the input audio so that it 

would have a major impact on adversarial audios, but have a 

minor impact on normal audios. As our first attempt, we study 

denoising and noise-adding functions in this work. But other 

functions can be applied as well, which is our future work. 

Fig. 4. The Proposed Defense System 

C. Denoising 

The basic idea of the denoising function is to remove or 

reduce perturbations or noises in input audios. Here, we 

applied the method of noise reducing proposed in [8] as our 

denoising function. 
As indicated in [8], the denoising method uses the spectral 

gating to reduce noises in an audio. Specifically, given both 
signal and noise audio clips, it transforms time-domain 
waveforms into the frequency domain, then removes the noise 
from the signal in the frequency domain, and finally 
transforms the modified signal from the frequency domain 
back to the time domain. 
 To get a noise audio clip, we assume that the noise or the 
perturbation is white and follows the normal probability 
distribution, based on the observations of the adversarial audio 
from Figure 3. That is, we consider that the perturbations are 
Gaussian noises, and ��	in Equation (4) is assumed to have the 
following normal distribution with a mean of 0 and a standard 
deviation of `: �� 	~	b10, `!3.    (11) 

The transformation of a signal from the time domain to 

the frequency domain is based on the short-time Fourier 

transform (STFT), which is widely applied in digital signal 

processing. Similarly, inverse STFT (iSTFT) is used to 

transform the signal from the frequency domain back to the 

time domain. The algorithm of the denoising function is 

summarized in Algorithm 2. 

D. Noise-Adding 

Different from the denoising function, the noise-adding 

function attempts to perturb adversarial audios so that 

adversarial attacks would lose or reduce the ability to mislead 

a SV system. 

The noise-adding function introduces some small noises 

to the input audio. Noises can take many different forms. As 

the first attempt, we apply Gaussian noises with a mean of 0 

and a standard deviation of `. That is,  �! � �� � bW,Z&   (12) 

where A1 is the input audio, A2 is the noise-added audio, and  &5[%	&D&4&-\	,-	bW,Z&	~	b10, `!3.  (13) 

The algorithm of the noise-adding function is shown in 

Algorithm 3. 

Algorithm 3 Noise-Adding Function 

Input: an audio clip A1, noise variance cd 

Output: a noise-added audio clip A2 

Require Function: normal distribution generator e 

1: R&S,- 

2: 				-W,Z&	[D,� ← 10,0, … ,03, Z,f& � D&-S\%	W:	�� 

3: 				:W'	&5[%	Z,S-5D	-W,Z&�,#	,-	-W,Z&	[D,�: 
4: 								-W,Z&�,# ← b10, `!3 
5:     				&-T	:W' 
6: 				�! ← �� � -W,Z&	[D,� 
7: &-T 

 

IV. PERFORMANCE EVALUATIONS 

In this section, we evaluate the effectiveness and the 

efficiency of the proposed defense system against adversarial 

attacks in SV systems. Specifically, we first describe the 

experimental setup. We then measure the impact of the 

defense methods on the normal operations of SV systems. 

Finally, we evaluate the performance of our proposed defense 

system against FakeBob attacks. 

A. Experimental Setup 

The experiments were run parallelly in two virtual 

machines (VMs) provided by Google Cloud Platform [22] 

and a local GPU server. Two VMs are with 8-core Intel Xeon 

CPU 3.1 GHz and 32 GB memory, whereas the GPU server 

is with 24-core Intel I9 CPU 2.9 GHz, 128 GB memory, and 

GeForce RTX 2080 Ti graphic card. All machines are 

installed with Ubuntu 20.04. 

Our experiments focus on GMM and i-vector SV systems. 

These SV systems are implemented by the Kaldi speech 

recognition toolkit [23] and use the pre-trained models from 

VoxCelab 1 [24]. Moreover, the adversarial attacks against 

these SV systems are implemented through FakeBob attacks 

[5] with the perturbation threshold of 0.002 (i.e., ε = 0.002) 

and 1,000 maximum iterations (i.e., m = 1,000). The audio 

dataset used is from LibriSpeech [25] and contains 9 different 

speakers, which were also applied in FakeBob [5]. For each 

speaker, there are 100 audio clips, each of which lasts 

between 4 and 10 seconds. The experiments on SV systems 

are through the API provided by Kaldi GMM or i-vector. 

It is noted that a SV system, either GMM or i-vector, 

without the proposed defense system, is deterministic. That 

is, when an input audio is accepted (or rejected) by the SV 

system, it will be always accepted (or rejected) for future 

Algorithm 2 Denoise Function 

Input: an audio clip A1, noise variance cd 

Output: a denoised audio clip A2 

Require Functions: normal distribution generator e, 

short-time Fourier transform STFT, inverse short-time 

Fourier transform iSTFT 

1: R&S,- 
2: 				-W,Z&	[D,� ← 	 �0,0, … ,0# 
3: 				:W'	&5[%	Z,S-5D	-W,Z&�,#	,-	-W,Z&	[D,�: 
4: 								-W,Z&�,# ← b10, `!3 

5:     				&-T	:W' 
6: 				-_Z\:\ ← .h�h1-W,Z&	[D,�3 
7: 				��_Z\:\ ← .h�h1��3 
8: 				�!_Z\:\ ←	Remove noise from �� based on  -_Z\:\ and ��_Z\:\ 

9: 				�! ← ,.h�h1�!_Z\:\3 
10: &-T 

 



testing in the same SV system. However, a SV system that is 

installed with our proposed defense system becomes 

stochastic, because of the effect of the Gaussian noise 

generation. That is, if an input audio is accepted (or rejected) 

in the current testing for the SV system, it may be rejected (or 

accepted) next time when it is fed into the same SV system. 

To address such a stochastic effect, during the testing we let 

an input audio repeat going through a SV system for 100 

times to get the average of the performance metrics such as 

EER and ASR. 

B. Performance Evaluations of the Proposed Defense 

System for Normal Operations of SV Systems 

In our experiments, we first study the impact of the 

proposed defense methods, i.e., denoising and noise-adding, 

on the normal operations of a SV system. Specifically, we use 

EER as the performance metric here. Recall that EER is the 

rate of FAR or FRR when they are equal, and FAR and FRR 

are defined in Equations (1) and (2), respectively. A smaller 

EER reflects a better SV system. Moreover, the added plugin 

function to a SV system would slow down the processing of 

an input audio. As a result, we also record the processing time 

in our experiments. 

Among 9 speakers provided, we select two speakers with 

the identifier of 61 and 2830 as registered users in two 

separate experiments. As shown in the next section, the 

FakeBob attacks against these two users can achieve 100% 

ASR in a SV system without our proposed defense system. 

To obtain the EER, 100 audio clips from a registered speaker 

were tested, whereas another 100 audio clips were randomly 

chosen from all illegal speakers to be fed into the SV system.     

Table I shows the performance of a GMM SV system with 

or without the denoising or noise-adding function for 

speakers 2830 and 61, as well as with different values of the 

standard deviation of noises (i.e., ` � 0.001, 0.002, and 

0.005). In the table, “O” means “Original,” “D” means 

“Denoising,” and “A” means “noise-Adding” in the plugin 

column. Note that the original GMM SV system, which is 

without the defense plugin, can be regarded as the special 

case when ` � 0 for either denoising or noise-adding. It can 

be seen that for most cases, when ` increases, EER increases 

for both denoising and noise-adding. However, the value of 

EER only increases slightly, especially when ` is not large; 

for example, `	 + 0.002. As a reference, in Table I we also 

record the threshold of the SV system (i.e., 7 ). Such a 

threshold will be applied for studying adversarial attacks. It 

can be seen that when ` increases, the threshold decreases in 

general.   

It can also be seen from Table I that in a GMM SV system, 

the denoising function takes much longer time than the noise-

adding function to process all 200 testing audios. The 

overhead of the noise-adding is very light, because the plugin 

of adding random Gaussian noises does not require too much 

computation. On the other hand, the denoising function needs 

to apply both STFT and iSTFT operations, which demand a 

lot of computation. 

We further summarize the performance of the proposed 

defense system for normal operations of an i-vector SV 

system in Table II. Similar to results in Table I, it can be seen 

that EER does not increase too much when `  increases, 

especially when ` � 0.001 or 0.002. Different from results in 

Table I, the processing time of an i-vector SV system with the 

defense is more similar to that without the defense. The 

reason is that the i-vector SV system requires longer time to 

test all 200 audios than the GMM SV system, but the 

overhead of a plugin is fixed.  

TABLE I.  PERFORMANCE EVALUATIONS OF PROPOSED DEFENSE SYSTEM 

ON NORMAL OPERATIONS OF GMM SV SYSTEMS 

Spk Plugin ` 
EER 

(%) 

Threshold 

(i.e., 7) 

Time 

(sec) 

2830 O 0 1.12 0.0610 17.58 

2830 D 0.001 2.25 0.0722 30.91 

2830 D 0.002 3.37 0.0708 30.53 

2830 D 0.005 2.92 0.0501 31.47 

2830 A 0.001 1.35 0.0770 18.77 

2830 A 0.002 2.58 0.0454 19.16 

2830 A 0.005 5.84 -0.0304 19.50 

61 O 0 0.97 0.1285 19.29 

61 D 0.001 0.97 0.1215 30.43 

61 D 0.002 2.52 0.1369 30.29 

61 D 0.005 3.79 0.0911 30.10 

61 A 0.001 1.07 0.1098 19.91 

61 A 0.002 1.26 0.0810 20.39 

61 A 0.005 2.04 0.0270 21.11 

TABLE II.  PERFORMANCE EVALUATIONS OF PROPOSED DEFENSE SYSTEM 

ON NORMAL OPERATIONS OF I-VECTOR SV SYSTEMS 

Spk Plugin ` 
EER 

(%) 

Threshold 

(i.e., 7) 

Time 

(sec) 

2830 O 0 0.0 2.1406 390.42 

2830 D 0.001 0.0 1.7603 406.68 

2830 D 0.002 0.0 1.4734 404.92 

2830 D 0.005 0.0 1.5418 404.92 

2830 A 0.001 0.0 2.1523 393.14 

2830 A 0.002 0.0 1.9582 394.13 

2830 A 0.005 0.34 1.5960 394.12 

61 O 0 0.0 2.1077 476.48 

61 D 0.001 0.29 1.9156 488.05 

61 D 0.002 0.1 1.8095 490.72 

61 D 0.005 0.97 1.9277 487.47 

61 A 0.001 0.87 2.0787 477.55 

61 A 0.002 0.78 1.8908 477.64 

61 A 0.005 1.94 1.7152 476.89 

 

From both Tables I and II, we can conclude that the 

proposed defense system only slightly degrades the 

performance of a SV system, especially when `  is small. 

Moreover, in a GMM SV system, the noise-adding function 

is preferred to the denoising function, because of the much 

better processing time. 

C. Performance Evaluations of the Proposed Defense 

System Against FakeBob Attacks 

Next, we study the performance of our proposed defense 

methods against FackBob attacks in a SV system. 

Specifically, we use ASR as the performance metric, which 

definition can be found from Equation (5). A smaller value of 

ASR indicates a better defense performance. Moreover, 

FakeBob uses multiple iterations to create an adversarial 

audio, as shown in Algorithm 1. Therefore, we also measure 

the average of the numbers of iterations and the average 

running time for FakeBob attacks to find an adversarial audio 



in our experiments. A larger number of the average iterations 

and the longer average running time reflect a better defense 

system against adversarial attacks. 

For adversarial attacks, we randomly selected 5 audio 

clips from each of four illegal speakers. Thus, 20 cases of 

adversarial attacks were studied to obtain the average ASR, 

the average number of iterations, and the average running 

time. 

Table III shows the experimental results of our proposed 

defense functions, i.e., denoising and noise-adding, against 

FakeBob attacks in a GMM SV system for speakers 2830 and 

61, when σ = 0, 0.001, 0.002, and 0.005. It can be seen that 

while FakeBob achieves 100% ASR for the original GMM 

SV system (i.e., σ = 0), the ASR of the SV system with the 

defense is less than 100%. Moreover, when σ increases, ASR 

decreases in general. For example, when σ = 0.002, ASR is 

averagely (64.6% + 47.5%) / 2 = 56.05% for the denoising 

function, whereas it is only (6.8% + 3.6%) / 2 = 5.2% for the 

noise-adding method. It can be clearly seen that noise-adding 

performs much better than denoising based on the ASR. 

Moreover, noise-adding leads to a much larger value of the 

average number of iterations and the much longer average 

running time than denoising and the original SV system. The 

average number of iterations and the average running time for 

denoising are similar to those in the original SV system. 

However, with the noise-adding plugin, the values of these 

two metrics are much larger. For example, in the original 

GMM SV system, the average of the average number of 

iterations is (13.5 + 32.5) / 2 = 23, and the average of the 

average running time is (113.54 + 203.82) / 2 = 158.68. But 

in the defense system with noise-adding and σ = 0.002, the 

averages of the average number of iterations and the average 

running time are (634.9 + 575.0) / 2 = 604.95 and (4423.60 + 

3562.15) / 2 = 3992.875, respectively. It indicates that noise-

adding slows down the attackers’ processing speed more than 

25 times and makes FakeBob significantly harder to find the 

adversarial audios. 

TABLE III.  PERFORMANCE EVALUATIONS OF PROPOSED DEFENSE SYSTEM 

AGAINST FAKEBOB ATTACKS IN SV SYSTEMS 

Spk Plugin ` EER 

(%) 

Avg 

iter 

Avg time 

(sec) 

Avg 

ASR 

GMM 
2830 O 0 1.12 13.5 113.54 100% 

2830 D 0.001 2.25 13.4 131.55 79.0% 

2830 D 0.002 3.37 12.1 128.85 64.6% 

2830 D 0.005 2.92 18.1 186.46 50.7% 

2830 A 0.001 1.35 67.0 388.53 23.2% 

2830 A 0.002 2.58 634.9 4423.60 6.8% 

2830 A 0.005 5.84 701.8 3925.76 6.8% 

61 O 0 0.97 32.5 203.82 100% 

61 D 0.001 0.97 24.4 252.48 75.4% 

61 D 0.002 2.52 33.6 343.07 47.5% 

61 D 0.005 3.79 26.5 285.09 51.3% 

61 A 0.001 1.07 118.2 841.30 25.5% 

61 A 0.002 1.26 575.0 3562.15 3.6% 

61 A 0.005 2.04 688.1 4774.93 1.4% 

i-Vector 
61 O 0 0.00 76.4 2776.62 100% 
61 D 0.002 0.10 57.5 2228.28 40.5% 
61 A 0.002 0.78 877.8 31573.95 1.0% 

Moreover, we have extended our experiments to an i-

vector SV system against FakeBob attacks. As shown in 

Table III, for speaker 61, denoising and noise-adding with σ 

= 0.002 are able to reduce the ASR from 100% to 40.5% and 

1.0%, respectively. Moreover, the average running time for 

FakeBob has been significantly increased by applying the 

noise-adding defense method. 

In summary, we can see from the experimental results that 

the noise-adding defense with a reasonable value of the 

standard deviation of noises (e.g., σ = 0.002) can effectively 

and efficiently counteract FakeBob attacks. Moreover, such a 

defense method is simple to implement, is very light-weight, 

and only degrades the performance of normal operations of a 

SV system slightly. 

V. CONCLUSIONS AND FUTURE WORK 

In this work, we have attempted to design and implement 

a defense system that is simple, light-weight, and effective 

against adversarial attacks in SV systems. Our designed 

system is based on the observations that the perturbations in 

an adversarial audio are very small and similar to white 

noises, but are not random and intentionally designed to fool 

SV. We have proposed to add the plugin function to 

preprocess an input audio so that perturbations can be 

removed or modified to lose the effect. We have studied two 

opposite plugin functions, i.e., denoising and noise-adding, 

and found that noise-adding has much better performance 

against FakeBob adversarial attacks than denoising. 

Specifically, noise-adding with σ = 0.002 in a GMM SV 

systems is able to slow down the speed of FakeBob to 

generate adversarial audios 25 times and reduce the targeted 

ASR from 100% to 5.2%. Moreover, noise-adding with σ = 

0.002 has a minor effect on normal operations of a SV system 

and has a slightly higher EER than that in the SV system 

without the defense. Therefore, we believe that this simple 

solution, i.e., the noise-adding plugin, should be applied to 

any SV system to counteract adversarial attacks such as 

FakeBob. To the best of our knowledge, this is the first 

attempt in applying the noise-adding method to defend 

against adversarial attacks in SV systems. 

As our on-going work, we will extend our study to other 

SV systems such as d-vector [15] and x-vector [16]. 

Moreover, we plan to research the effect of adding other 

different types of noises, such as Rustle noises [26], on the 

normal operations of a SV system and against adversarial 

attacks. 
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