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1 Introduction 

Worms infect vulnerable hosts and use them to compromise 
other vulnerable hosts. Such a self-propagation attack has 
been a significant threat to network security since 2001 
(Burt et al., 2008; Chen et al., 2009; Faghani and Nguyen, 
2013; Sun et al., 2008a, 2008b, 2009; Wen et al., 2013; 

Zhang et al., 2014; Yun et al., 2015). Internet worms, such  
as Code Red, Nimda, Slammer, Witty, and Storm, infected a 
large number of hosts and caused huge damages. In recent 
years, worms have also been a main tool used by botnets to 
recruit a certain number of compromised machines and 
collect the information of infected hosts (Chen et al., 2010; 
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Dainotti et al., 2015; Han et al., 2012; Li et al., 2011;  
Liu et al., 2009). Therefore, it is important and imperative to 
accurately model the spread of worms in the internet. 

Worm propagation models can help better understand 
worm dynamic characteristics. More importantly, such 
models are fundamental for detecting and defending against 
internet worms. Mathematical models of worm spreading 
have been widely studied. For example, differential 
equations have been used to describe random-scanning 
worms (Staniford et al., 2002; Vojnovic and Ganesh, 2008; 
Vojnovic et al., 2010; Zou et al., 2006) and to design a 
worm detection system (Zou et al., 2005). A discrete-time 
model has been proposed with the consideration of host 
recovery and patch, and has been exploited to monitor, 
detect, and defend against worms (Chen et al., 2003). A 
stochastic model has been studied to reflect the variation of 
worm propagation and its impact to worm detection (Nicol, 
2006). All existing models, however, assume that vulnerable 
hosts are homogeneous and as a result, that all infected 
hosts use the same scanning rate to search for targets. Two 
related works (Kirmani and Hood, 2010; Zou et al., 2002) 
consider that the scanning rate of infected hosts can vary 
with time. But these two works also make the assumption 
that the worm-scanning rate is the same for all infected 
hosts. Therefore, the impact of heterogeneity in vulnerable 
hosts on worm propagation has not been studied yet.  

Vulnerable hosts in the internet have been shown to be 
significantly heterogeneous. The network conditions and the 
computer performance of end-hosts are very different. For 
example, it has been shown that 70% of the end-hosts in a 
popular BitTorrent system have an upload capacity between 
350 Kbps and 1 Mbps, whereas 10% of them have an 
upload capacity of 10 Mbps or more (Isdal et al., 2007). 
Moreover, 64% of the available resources are contributed by 
only 5% of hosts that have the bandwidth between 55 Mbps 
and 110 Mbps. A measurement study of the Witty worm 
also indicates strong heterogeneity in vulnerable hosts 
(Shannon and Moore, 2004a). For instance, the bit rates of 
infected hosts span from less than 56 Kbps to more than 
100 Mbps. Hence, when studying worm propagation 
models, we cannot ignore the effect of the heterogeneity in 
vulnerable hosts. 

The goal of this work is to study the impact of 
heterogeneity in vulnerable hosts on worm propagation 
(Chen and Chen, 2012). Specifically, we attempt to answer 
the following questions: 

• Does heterogeneity in vulnerable hosts slow down 
worm propagation? 

• If vulnerable hosts have a higher degree of 
heterogeneity, would this have a greater impact on 
worm spreading? 

• How can we effectively predict and model worm 
propagation among heterogeneous vulnerable hosts? 

To answer these questions, we analytically and empirically 
study the worm propagation among both homogeneous and 
heterogeneous vulnerable hosts. Our analysis is based on the 

probabilistic model, and the inequality and approximation 
techniques; whereas the simulation uses the scale-down 
method and mimics the spread of the Witty worm in the 
internet based on the real trace of scanning rates from 
CAIDA (Shannon and Moore, 2004b). Specifically, we 
summarise our discoveries and contributions in the 
following: 

• Through both analysis and simulation, we find that 
statistically the worm has a smaller spreading speed 
among heterogeneous vulnerable hosts with distinct 
scanning rates than among homogeneous vulnerable 
hosts with the same scanning rate. For instance, we 
demonstrate that a Witty-like worm can be slowed 
down almost three times on average in the 
heterogeneous case than in the homogeneous case. 
Therefore, heterogeneity in vulnerable hosts can 
potentially slow down worm spreading significantly. 

• We show analytically and conjecture that if the degree 
of heterogeneity in vulnerable hosts is higher, the worm 
propagates slower. Our simulation results verify the 
conjecture. This indicates that the current high degree 
of heterogeneity among vulnerable hosts in the internet 
indeed helps defenders to gain some time to respond to 
worm attacks. 

• We then design a novel model to predict the spread of 
worms among heterogeneous vulnerable hosts. Such a 
model characterises the worm propagation delay, i.e., 
the time difference between the homogeneous case and 
the heterogeneous case. Simulation results show that 
our model can accurately predict the dynamics of worm 
propagation among heterogeneous vulnerable hosts. 

The remainder of this paper is structured as follows.  
Section 2 discusses the heterogeneity in vulnerable hosts. 
Section 3 gives our analysis on worm propagation among 
heterogeneous vulnerable hosts, whereas Section 4 uses 
simulations to verify our analytical results. Finally,  
Section 5 concludes this paper. 

2 Heterogeneity in vulnerable hosts 

Vulnerable hosts in the internet are heterogeneous. This lies 
in the fact that end-hosts in the internet have distinct 
bandwidth and computer performance. A host may connect 
to the internet through a dial-up connection (e.g., 56 Kbps), 
a digital subscriber line (DSL) (e.g., 4 Kbps ~ 50 Kbps),  
a local area network (LAN) (e.g., 10 Mbps, 100 Mbps,  
or 1 Gbps), or a wireless LAN (e.g., 54 Mbps) (Kurose and 
Ross, 2008; Shin et al., 2012). 

Moreover, many worms such as Slammer and Witty are 
bandwidth limited and send packets as fast as the infected 
hosts’ internet connection allows (Moore et al., 2003; 
Shannon and Moore, 2004a). A measurement study on the 
Witty worm has shown that the infected hosts are 
heterogeneous (Shannon and Moore, 2004a). Specifically, 
while the average transmission speed of an infected host is  
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3 Mbps, 61% of infected hosts transmit with bit rates 
between 96 Kbps and 512 Kbps. We obtain the real trace of 
the Witty worm from CAIDA (Shannon and Moore, 2004b) 
and show how the cumulative distribution function of 
infected hosts by the Witty worm varies with packages-per-
second (PPS) in Figure 1. Here PPS is the number of 
packages sent by an infected host per second and is indeed 
the scanning rate. Note that in the figure x-axis uses log 
scale. It can be seen that the PPS varies from 0.0006 to 
25,620.1819. The mean of PPS is 135.9872, whereas the 
standard deviation is 795.4414. Thus, the scanning rate of 
the Witty worm varies significantly among infected hosts. 

For an individual infected host, the bandwidth mainly 
determines how many scans per unit time a bandwidth-
limited worm can send to find targets, i.e., the worm-
scanning rate. If an infected host has a higher bandwidth, 
the worm-scanning rate is always higher. In this work, 
therefore, we use the variation of worm-scanning rates to 
reflect the heterogeneity in vulnerable hosts. 

Figure 1 Cumulative distribution function (CDF) of infected 
hosts by the Witty worm varies with packets per 
second (PPS) (see online version for colours) 

 

3 Theoretical analysis 

Since vulnerable hosts have distinct bandwidth and 
computer performance, worm-scanning rates from infected 
hosts can be very different. In this paper, we specifically 
focus on the impact of the variation of scanning rates  
on worm propagation and make several simplified 
assumptions. First, we assume that once a host is infected, it 
remains in the infection state. Such a susceptible → infected 
(SI) model has been widely used in studying worm 
spreading (Chen and Ji, 2009; Nicol, 2006; Staniford et al., 
2002; Vojnovic et al., 2010; Zou et al., 2006). Second, we 
focus on random-scanning worms. Random scanning selects 
target IPv4 addresses uniformly and has been exploited by 
many worms such as Code Red (Moore et al., 2002), 
Slammer (Moore et al., 2003), and Witty (Shannon and 
Moore, 2004a). The observations found in this paper, 
however, can be well extended to other scanning methods 
such as localised scanning (Staniford et al., 2002), 
importance scanning (Chen and Ji, 2007), and divide-
conquer scanning (Chen et al., 2010). Finally, while the  
 

scanning rates of infected hosts can be different from each 
other, we assume that the scanning rate of an individual host 
does not vary with time. This is a reasonable assumption for 
two reasons: 

• As indicated by our analysis, the time period of worm 
propagation that we are interested in is at the early 
stage, i.e., before the worm has infected many hosts and 
congested networks.  

• It has been observed that an infected host always scans 
for vulnerable hosts at the maximum speed allowed  
by its network conditions and computing resources 
(Wei and Mirkovic, 2008).  

In this section, we first show theoretically that  
compared with worm propagation among homogeneous 
vulnerable hosts, worm spreading is slowed down among 
heterogeneous vulnerable hosts. We then demonstrate and 
conjecture that if the degree of heterogeneity in vulnerable 
hosts is higher, worms spread slower. Finally, we provide a 
novel worm model that characterises the spread of worms 
among heterogeneous vulnerable hosts. The notations used 
in this paper are summarised in Table 1. 

Table 1 Notations used in this paper 

Notations Definition or explanation 

N Total number of vulnerable hosts 

Ω Address space that a worm scans, i.e., Ω = 232 for IPv4 
address space 

I Number of infected hosts 
T Time to recruit a new victim 
Si Scanning rate of infected host i 
S Mean of scanning rates 

σ2 Variance of scanning rates 

DH Delay caused by the variation of scanning rates at the 
early stage of worm propagation 

I0 Upper bound of the number of infected hosts for 
calculating DH 

3.1 Comparing worm propagation with 
homogeneous vulnerable hosts and with 
heterogeneous vulnerable hosts 

We use a discrete-time system to analyse the effect of  
the variation of scanning rates on worm propagation. 
Specifically, it is assumed that there are totally N vulnerable 
hosts among Ω scanning space. For IPv4, Ω = 232, and thus 
N << Ω. It is also assumed that there are currently I infected 
hosts, and infected host i (i = 1, 2, …, I) uses a scanning  
rate of si, i.e., sends si scans per unit time. Then, the total 
number of scans at the next time step is 

1
.I

ii
s

=∑  Therefore, 
the probability that an uninfected vulnerable host is hit by a 
specific worm scan at the next time step is (N – I)/Ω, and 
the probability that an uninfected vulnerable host is hit by at 
least one worm scan at the next time step is 
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Thus, the time to recruit a new victim, T, follows the 
geometric distribution, i.e., 

1Pr( ) (1 ) , 1, 2, 3,kT k ph ph k−= = − = …  (3) 

which leads to 
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It can be seen that if E[T] is smaller, the worm spreads 
faster. 

If all infected hosts are homogeneous, si = s, ∀i, i.e., the 
scanning rate for all infected hosts is a constant. Thus, the 
expected time to recruit a new victim is  

[ ] .
( )

E T
sI N I

Ω=
−

 (5) 

On the other hand, if infected hosts are heterogeneous, the 
scanning rate can be very different for distinct infected 
hosts. Because of the nature of random scanning, each 
instant of worm propagation can infect vulnerable hosts in 
totally different orders. Hence, we assume that si’s are 
independent and identically-distributed (i.i.d.) random 
variables with mean s and variance σ2 (σ2 ≥ 0). Note that if 
σ2 = 0, vulnerable hosts are homogeneous; otherwise,  
they are heterogeneous. Therefore, from the law of total 
expectation, we have  

1 2

1

1[ ] [ [ | , , , ]] .I I
ii

E T E E T s s s E
N I s

=

 Ω  = =
−   ∑

…  (6) 

According to the Jensen’s inequality (Ross, 1996; Cover 
and Thomas, 1991), if X is a random variable, f is a strictly 
convex function (i.e., f′′(x) > 0), and E[X] and E[f(X)] exist, 
then 

[ ( )] ( [ ]),E f X f E X≥  (7) 

where the equality holds if and only if X is a constant.  
Next, we apply the Jensen’s inequality by setting f(x) = 1/x. 
Since f′(x) = –1/x2 and f′′(x) = 2/x3 > 0 when x > 0, 1/x is a 
strictly convex function. We then find from equation (6) that 

1

1[ ] ,
( )[ ]I

ii

E T
N I sI N IE s

=

Ω Ω≥ ⋅ =
− −∑

 (8) 

where the equality holds if and only if σ2 = 0. 
Comparing equation (5) and Inequality (8), we have the 

following theorem. 

Theorem 1: If worm-scanning rates si’s are i.i.d. random 
variables with mean s and variance σ2, then the worm 
spreads slower when σ2 > 0 than when σ2 = 0. That is, 
statistically the worm has a smaller spreading speed among 
heterogeneous vulnerable hosts with distinct scanning rates 
than among homogeneous vulnerable hosts with the same 
scanning rate. 

Theorem 1 indicates that the existing worm propagation 
models ignore the variation of scanning rates and thus 
overestimate the worm propagation speed. Moreover, 
Theorem 1 reflects that the heterogeneity in vulnerable hosts 
indeed hinders worm propagation and can help defenders 
gain some time to respond to worm attacks. 

Here, we use a very simple example to provide an 
intuitive explanation to Theorem 1. Assume that a worm has 
50% vulnerable hosts using a scanning rate of 1/s and other 
50% vulnerable hosts with a scanning rate of 3/s. The 
average scanning rate is 2/s. When the worm starts from an 
infected host (i.e., I = 1), the expected time to recruit a new 
victim is 

1 1 1 1[ ]
2 1 2 3

E T
N I

Ω  = ⋅ + ⋅ −  
 (9) 

4[ ]
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N I
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Thus, the worm among heterogeneous vulnerable hosts 
takes 4/3 times of time to recruit a new victim as that among 
homogenous vulnerable hosts. 

3.2 Conjecturing the impact of the degree of 
heterogeneity in vulnerable hosts on worm 
propagation 

Since the heterogeneity in vulnerable hosts slows down 
worm propagation, a question arises: Would the worm 
spread slower if the degree of the heterogeneity of 
vulnerable hosts is higher? That is, when σ2 increases, 
would E[T] be larger? To answer this question, we apply 
Taylor expansion and approximation techniques. 
Specifically, we study the Taylor expansion of function 
f(x) = 1/x, i.e., 

21 1( ) ( )( ) ( )( )
2

f x f a x a f a x a H
a

′ ′′= + − + − +  (12) 

2

2 3

1 ( )( ) .x a x af x
a a a

− −≈ − +  (13) 

In the above equation, H contains the higher-order terms 
and can be ignored. Note that 

1
[ ] .I
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=
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1

I
ii

x s
=

=∑  and a = sI in the above equation, we have 

2
1 1
2 2 3 3

1

( )1 1 .
I I

i ii i
I

ii

s sI s sI
sI s I s Is

= =

=

− −
≈ − +∑ ∑

∑
 (14) 



228 Z. Chen and C. Chen 

Taking the expectation on both sides of the above equation, 
we obtain 
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Therefore, from equations (6) and (17), the expected time to 
recruit a new victim is 

2

3 2[ ] .
( ) ( )

E T
sI N I s I N I

σΩ Ω≈ +
− −

 (18) 

In the above equation, the first term (i.e., Ω/sI(N – I)) is 
identical to E[T] for the homogeneous case, and the second 
term is proportional to σ2. Based on this approximation 
result, it is obvious that when σ2 increases, E[T] also 
increases. Hence, we have the following conjecture. 

Conjecture 1: When σ2 is larger, the worm spreads slower. 
That is, the worm propagates slower among the vulnerable 
hosts with a higher degree of heterogeneity. 

From equation (18), moreover, we can see when the number 
of infected hosts (i.e., I) is large, the second term in the 
equation closes to zero, and the heterogeneous case is 
similar to the homogeneous case. However, on the other 
hand when the number of infected hosts is small, the  
second term can be large, which leads to slower worm 
propagation for the heterogeneous case. In other words, 
equation (18) indicates that the main difference between 
worm propagation with homogenous vulnerable hosts  
and with heterogeneous vulnerable hosts lies at the early 
stage of worm spread when the number of infected hosts is 
small. 

3.3 Modelling worm propagation among 
heterogeneous vulnerable hosts 

We apply a novel approach to characterise the spread of 
random-scanning worms among heterogeneous vulnerable 
hosts. Instead of obtaining the propagation speed of worms, 
we attempt to study how much worm propagation delay, 
compared with the homogeneous case, is caused by the 
variation of worm-scanning rates. In this way, once we 
simulate or model the worm spreading among homogeneous 
vulnerable hosts, we can predict or model the worm 
propagation among heterogeneous vulnerable hosts. 

We first use two worm-scanning rates as an example to 
demonstrate our modelling procedure. We assume that 
among N vulnerable hosts, p⋅N hosts have a scanning rate  
of r1, and (1 – p)⋅N hosts have a scanning rate of r2, where 
0 ≤ p ≤ 1 and r1 ≠ r2. That is, a randomly selected infected 

host has a scanning rate of r1 with probability p and a 
scanning rate of r2 with probability 1 – p. Thus, the average 
scanning rate is s = pr1 + (1 – p)r2. That is, 2

2 1
.r s

r rp −
−=  Note 

that p can be derived, given arbitrary values of r1, r2, and s. 
Moreover, among the I infected hosts, the number of hosts 
having the scanning rate of r1 follows the binomial 
distribution B(I, p). If k infected hosts have a scanning rate 
of r1, then 1 21

( ) .I
ii

s kr I k r
=

= + −∑  From equation (6), we 
then obtain 
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Therefore, based on the above equation and equation (5),  
we can calculate the time difference to recruit a new  
victim between the heterogeneous case and the 
homogeneous case, i.e., 

0 1 2
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k
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According to the feature of the binomial distribution, when I 
is large, kr1 + (I – k)r2 approaches sI with a high probability, 
and thus ∆E[TI] is very small and can be ignored. Therefore, 
we only need to calculate the time difference when I is not 
large (e.g., I ≤ 1% of the total number of vulnerable hosts). 
In other words, the worm propagation difference between 
the heterogeneous case and the homogeneous case only 
occurs at the early stage of worm spreading when the 
number of infected hosts is small. Statistically, once a worm 
has recruited a sufficient number of infected hosts, the 
heterogeneity in vulnerable hosts has little impact on the 
worm propagation. On the other hand, when a worm has just 
started spreading from one or a small number of infected 
hosts, the impact of the heterogeneity in vulnerable hosts on 
worm dynamics can be significant, which will be shown in 
the next section.  

Specifically, if we assume that a worm starts spreading 
from one infected host and set I0 as the upper bound for 
calculating ∆E[TI] in equation (20), then 

0

1
[ ]

I

H i
i

D E T
=

= ∆∑  (21) 

represents how much delay is caused by the variation of 
scanning rates at the early stage of worm propagation. That 
is, once we obtain the propagation curve for worms among 
homogeneous vulnerable hosts with the same average 
scanning rate, we can then shift the curve with the delay DH 
to predict the worm spreading among heterogeneous 
vulnerable hosts. 

Note that such a modelling procedure can be easily 
extended to the case of multiple worm-scanning rates or the 
case when worm-scanning rates follow an arbitrary 
distribution. For example, when a worm has multiple 
scanning rates (i.e., r1, r2,…, rm), an infected host has a 
scanning rate of ri with probability pi, where m is the 
number of scanning rates and 

1
1.m

ii
p

=
=∑  Let ni (ni ≥ 0) 
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denote the number of infected hosts among I infected hosts 
that have the scanning rate of ri, where 

1
.m

ii
n I

=
=∑  Then, 

ni’s have a multinomial distribution with parameters I and 
pi’s, and 
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=∑ ∑  Therefore, equation (19) 

becomes 
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Moreover, if si’s are i.i.d. random variables with probability 
distribution fS(s). Then,  
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In a similar way, we can obtain ∆E[TI] and DH for the  
worm with multiple scanning rates or an arbitrary 
distribution of scanning rates, and use them to predict  
the worm propagation among heterogeneous vulnerable 
hosts. 

4 Simulation verification 

We verify the analytical results in the previous section by 
simulating the spread of a worm among vulnerable hosts 
with both homogeneous and heterogeneous scanning rates. 
In our simulations, both homogeneous and heterogeneous 
cases have the same average worm-scanning rate. 
Moreover, the target of each worm scan is created by a 
random number generator over the scanning space, so that 
each host is hit by the worm scan with an equal probability. 
Once an uninfected vulnerable host is hit by a worm scan, 
we record the infection time, i.e., when this vulnerable host 
is compromised. Based on this infection time, we can count 
the number of infected hosts at each time step and  
thus obtain the worm propagation curve. Furthermore,  
the worm starts spreading from one infected host (i.e., 
hitlist = 1), which is randomly selected from the vulnerable 
hosts. 

To obtain the analytical results for worm propagation in 
the heterogeneous case, we first obtain the simulation 
results for worm spreading in the homogeneous case, and 
use equation (21) to calculate the delay (i.e., DH) caused by  
the variation of scanning rates. We then shift the worm 
propagation curve from the homogeneous case with the 
delay DH to predict worm spreading in the heterogeneous 
case. 

We first study random-scanning worms with two 
scanning rates. That is, we assume that some infected hosts 
have a scanning rate of scan1, whereas others have a 
scanning rate of scan2. If scan1 = scan2, it is the 
homogeneous case; otherwise, it is the heterogeneous case. 
We then simulate the propagation of the Witty worm using 
the actual scanning rates obtained from CAIDA (Shannon 
and Moore, 2004b). Specifically, in this section we start 
with applying scale-down simulations to obtain the 
observations of worm propagation in a /16 network with 

two scanning rates. We then simulate the spread of worms 
in the IPv4 address space with two scanning rates. Finally, 
we study Witty-worm spread with multiple scanning rates 
and the effect of parameters such as the scanning rate of the 
initially infected host and I0 in equation (21). 

4.1 Scale-down simulations 

A scale-down simulation studies worm propagation in a 
much smaller scanning space, instead of the IPv4 address 
space that contains 232 IP addresses (Weaver et al., 2004).  
In such a way, the patterns of worm spreading can be 
obtained in a much shorter time through simulations. We 
apply the technique of scale-down simulations and simulate 
the spread of random-scanning worms in a /16 subnet. 
Specifically, we assume that the scanning space is 216 (i.e., 
Ω = 65,536), the number of vulnerable hosts is 5000 (i.e., 
N = 5000), and the average scanning rate is 10/s (i.e., 
s = 10/s). 

Figure 2 shows the simulation results of worm 
propagation with four cases of two scanning rates:  

• scan1 = scan2 = 10 

• scan1 = 5 and scan2 = 15 

• scan1 = 1 and scan2 = 19 

• scan1 = 1 and scan2 = 91. 

The curves in the figure are averages over 10,000 runs.  
It can be seen that compared with the worm in the 
homogeneous case (i.e., case (1)), worms spread slower in 
the heterogeneous cases (i.e., cases (2)–(4)), which verifies 
Theorem 1. Moreover, if the degree of the heterogeneity in 
vulnerable hosts is higher, the worm spreads slower, which 
confirms Conjecture 1. Specifically, the worm takes on 
average 28.1 s to infect all vulnerable hosts in case (1), 
whereas the worm uses 28.8, 36.0, and 55.0 s in cases (2), 
(3), and (4), respectively. Moreover, it can be seen from the 
figure that after the worm has infected a certain number of 
hosts (e.g., 1% of vulnerable hosts), the propagation curves 
for all four cases are identical, which verifies our 
observations from equation (20). 

Figure 2 Impact of scanning-rate variation on worm propagation 
in scale-down simulations (Ω = 65,536, N = 5000, 
s = 10/s, and hitlist = 1) (see online version for colours) 
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Figure 3 compares the simulation results to our analytical 
results for the heterogeneous cases. In equation (21), we set 
50 as the upper bound (i.e., I0 = 50) to calculate the delay 
(i.e., DH). Specifically, we find that DH = 0.7, 8.1, and 26.8 s 
for cases (2)–(4). From the figure, it can be seen that the 
curves of analytical results and simulation results overlap, 
indicating that our prediction is accurate. 

Figure 3 Comparisons of worm propagation from scale-down 
simulations and from the model (Ω = 65,536, 
N = 5000, s = 10/s, hitlist = 1, and I0 = 50) (see online 
version for colours) 

 

4.2 Two-scanning-rates worm propagation 
simulations 

Next, we simulate the spread of a worm in the IPv4 address 
space with two scanning rates, using the parameters from 
(Shannon and Moore, 2004a). Specifically, the worm scans 
the entire IPv4 address space (i.e., Ω = 232), targets 55,909 
vulnerable hosts (i.e., N = 55,909), and uses an average 
scanning rate of 1200/s (i.e., s = 1200/s) (Shannon and 
Moore, 2004a). We consider three cases of two worm-
scanning rates: (1) scan1 = scan2 = 1200; (2) scan1 = 200 
and scan2 = 2200; (3) scan1 = 100 and scan2 = 10,000. For 
case (3), two scanning rates differ 100 times, which is 

motivated from the observation that the bandwidth capacity 
of end-hosts can have 100 times difference (Isdal et al., 
2007). For each scenario, we simulate 100 runs with 
different seeds. Since the major difference among three 
cases occurs in the time period before the worm infect a 
significant portion of vulnerable hosts, our simulator stops 
running when the worm has compromised 30,000 hosts. 

Figure 4 shows the spread of the worm with three 
different combinations of two scanning rates. In each sub-
figure, the ‘5%’ curve indicates that a worm spreads no 
faster than this curve in 5 out of 100 simulation runs.  
The similar definition is applied to the ‘25%’, ‘50%’, 
‘75%’, and ‘95%’ curves. Moreover, the ‘mean’ curve  
is the average over 100 runs. It can be seen that the worm 
propagates faster in the homogeneous case than in the 
heterogeneous cases. Furthermore, when the degree of 
heterogeneity in vulnerable hosts increases, the worm 
spreads slower, and the variation of worm propagation is 
larger. These observations are similar to those in the scale-
down simulations and verify our analysis. Specifically, 
comparing cases (1) and (3), we find that the worm uses on 
average 756.0 s to infect 30,000 hosts in the homogeneous 
case, whereas the worm needs 2212.9 s to compromise the 
same number of hosts in the heterogeneous case. This 
means that the worm is slowed down about three times due 
to the variation of scanning rates and indicates that the 
heterogeneity in vulnerable hosts can potentially impact 
worm spreading significantly. 

We then further evaluate the performance of our 
prediction to worm propagation among heterogeneous 
vulnerable hosts in Figure 5. In our predication, we use only 
10 as the upper bound in equation (21), i.e., I0 = 10.  
In this figure, the curves of simulations are the averages 
over 100 runs, whereas the curves of the model are based  
on equations (20) and (21). It can also be seen that  
the curves of simulation and analytical results are very 
close, indicating that our model well characterises the 
dynamics of worm propagation among heterogeneous 
vulnerable hosts. 

Figure 4 Impact of scanning-rate variation on worm propagation (Ω = 232, N = 55,909, s = 1200/s, and hitlist = 1): (a) Case 1: 
scan1 = scan2 = 1200; (b) Case 2: scan1 = 200 and scan2 = 2200 and (c) Case 3: scan1 = 100 and scan2 = 10,000 (see online 
version for colours) 
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Figure 5 Comparisons of worm propagation from  
simulations and from the model (Ω = 232, N = 55,909, 
s = 1200/s, hitlist = 1, and I0 = 10) (see online version 
for colours) 

 

4.3 Witty-worm propagation simulations 

We further study the propagation of the Witty worm based 
on the real trace from CAIDA (Shannon and Moore, 
2004b). Specifically, we apply the actual scanning rates of 
the Witty worm from Figure 1. To simplify our analysis,  
we divide the scanning rates of the Witty worm into four 
groups:  

• scanning rate < 10 

• 10 ≤ scanning rate < 100 

• 100 ≤ scanning rate < 1000 

• 1000 ≤ scanning rate. 

Table 2 shows the percentage of infected hosts and the mean 
of scanning rates for each group. 

We then simulate the spread of the Witty worm with  
four scanning rates as shown in Table 2 and total  
55,909 potential targets (i.e., N = 55,909) over the  
entire IPv4 address space (i.e., Ω = 232). To mimic the 
homogeneous case, we use the average of scanning  
rates, 135.8537 (i.e., 5 × 0.3047 + 29 × 0.6190 + 334 
× 0.0518 + 4044 × 0.0245), for all vulnerable hosts. For 
each case in our simulations, we simulate 200 runs with 
different seeds and stop simulator when 30,000 hosts have 
been infected. 

Table 2 Summary of the four groups of scanning rates of the 
Witty worm 

Range Percentage Mean of scanning rates 

<10 0.3047 5 
10∼100 0.6190 29 
10∼1000 0.0518 334 
≥1000 0.0245 4044 

Figure 6 shows the spread of the Witty worm for both the 
homogeneous case and the heterogeneous case. Similar to 
Figure 4, it can be seen that the worm spreads much slower 
in the heterogeneous case than in the homogeneous case. 
Specifically, the worm needs on average 18,310 s to infect 
30,000 hosts in the heterogeneous case, whereas it uses only 
6586 s in the homogeneous case. This indicates that the 
worm is slowed down almost three times due to the 
heterogeneity in vulnerable hosts. Moreover, we notice that 
Figure 6(b) shows a relatively big gap between ‘75%’ curve 
and ‘95%’ curve. This reflects that in some runs, a worm 
can spread extremely slow if vulnerable hosts infected at the 
early stage of worm propagation are with low scanning rates 
(e.g., 5/s in this study). 

Figure 6 Impact of scanning-rate variation on Witty-worm propagation (Ω = 232, N = 55,909, and hitlist = 1): (a) homogenous case  
and (b) heterogeneous case (see online version for colours) 
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Figure 7 compares the simulation results to our analytical 
results for the heterogeneous case. In our analysis, we apply 
equation (22) for four scanning rates and use 20 as the upper 
bound in equation (21), i.e., I0 = 20. From the figure,  
it can be seen that the curve of analytical results and 
simulation results overlap, indicating the performance of our 
predication is satisfactory. 

Figure 7 Comparisons of Witty-worm propagation from 
simulations and from the model (Ω = 232, N = 55,909, 
hitlist = 1, and I0 = 20) (see online version for colours) 

 

Figure 8 Effect of the scanning rate of the initially infected host 
(see online version for colours) 

 

We then consider the effect of some parameters on  
worm propagation and our prediction. We first study the 
scanning rate of the initially infected host (i.e., hitlist).  
In Figure 8, we start a worm from a host with a fixed 
scanning rate and simulate each case with 100 runs. Each 
curve in the figure is an average over 100 runs. It can be 
seen that the worm spreads much slower from a host with a 
scanning rate of 5/s than from a host with a scanning rate of 
4044/s. The figure shows that the scanning rate of the 
initially infected host can affect worm propagation 
significantly in the heterogeneous case. Next, we study  
the effect of I0 in equation (21) on calculating the delay  
 
 
 

in Figure 9. It can be seen that when I0 increases, DH 
increases also. However, when I0 is small, the increase rate 
of DH is large; whereas when I0 closes to 20, the increase 
rate of DH becomes marginal. Therefore, using 20 as the 
upper bound seems reasonable in estimating the delay  
(i.e., DH) caused by the variation of scanning rates. 

Figure 9 Effect of the number of infected hosts used for 
calculating delay (i.e., I0) (see online version for 
colours) 

 

5 Conclusions 

In this work, we have shown that heterogeneity in 
vulnerable hosts slows down worm propagation through 
both analysis and simulation. Moreover, a higher degree  
of heterogeneity in vulnerable hosts leads to slower 
propagation of worms. We have also designed a new model 
to characterise worm spreading among heterogeneous 
vulnerable hosts. Our model focuses on the worm 
propagation time difference between the heterogeneous case 
and the homogeneous case, and is shown empirically to 
have a good performance to predict worm dynamics. To the 
best of our knowledge, this is the first attempt in 
understanding the impact of the heterogeneity of vulnerable 
hosts on worm propagation quantitatively. 

As our on-going work, we plan to extend the study  
to other scanning methods such as importance scanning 
(Chen and Ji, 2007) and divide-conquer scanning (Chen  
et al., 2010). 
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