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Abstract: Epidemic processes are an important security research topic for both the internet
and social networks. The epidemic threshold is a fundamental metric used to evaluate epidemic
spread in networks. Previous work has shown that the epidemic threshold of a network is
1/λmax(A), i.e., the inverse of the largest eigenvalue of its adjacency matrix. In this work,
however, we indicate that such a theoretical threshold ignores spatial dependence among nodes
and hence underestimates the actual epidemic threshold. Moreover, inspired by the Markov
random field, we analytically derive a more accurate epidemic threshold based on a spatial
Markov dependence assumption. Our model shows that the epidemic threshold is indeed
1/λmax(A)(1− ρ), where ρ is the average spatial correlation coefficient between neighbouring
nodes. We then apply simulations to compare the performance of these two theoretical epidemic
thresholds in different networks, including regular graphs, synthesised irregular graphs, and
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in networks.
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1 Introduction

Epidemic processes are an active interdisciplinary
research area among physics, mathematics, epidemiology,
social science, computer engineering, and computer
science (Daley and Gani, 2001; Guille et al., 2013;
Mahdizadehaghdam et al., 2016; Nowzari et al., 2016;
Pastor-Satorras et al., 2015; Tang and Li, 2011). An
epidemic process is a process that an item (such as news,
topic, disease, or worm) self-propagates across networks,
representing an important security research topic for both
the internet and social networks. For example, internet
malware, such as worms, botnets, and ransomware, can
infect many computers in a short time (Chen and Ji, 2009).
In 2017, WannaCry ransomware malware was reported to

have infected more than 230,000 computers within 24 hours
(Wikipedia, 2017). Moreover, in social networks, both good
information (e.g., products, news, topics, and innovations)
and unwanted information (e.g., viruses, misinformation,
and rumours) can spread from people to people or from
friends to friends. On 23 April 2013, a rumour on two
explosions in White House and the injury of President
Barack Obama was spread over Twitter by some hackers.
Due to this rumour, both the Standard & Poor’s 500 Index
and the DOW Jones industrial average fell 1% (Foster,
2013). It is therefore of great importance to characterise
epidemic dynamics in networks, which can help us design
network structures, protocols, and policies to facilitate the
spread of good information and counteract the propagation
of malware and unwanted information.
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The epidemic threshold is a fundamental metric used to
evaluate epidemic spread in networks (Chakrabarti et al.,
2008; Ferreira et al., 2012; Ganesh et al., 2005; Givan
et al., 2011; Kephart and White, 1991; Mieghem et al.,
2009; Prakash et al., 2011; Wang et al., 2003). Such a
threshold reflects the condition on which an infection will
either die out or become epidemic. Specifically, in the
classic susceptible-infected-susceptible (SIS) model, a node
in a network can be either susceptible or infected. If the
node is infected, it can be cured and become susceptible
with a death rate; otherwise, it can be infected by one of
its infected neighbours with a birth rate. When the ratio
between the birth rate and the death rate is greater than
the epidemic threshold, the infection will become epidemic;
otherwise, it will die out.

An important discovery on epidemic spread is that in
the SIS model, the epidemic threshold for a network has
claimed to be 1/λmax(A), i.e., the inverse of the largest
eigenvalue of its adjacency matrix (Chakrabarti et al.,
2008; Mieghem et al., 2009). The process of deriving this
threshold, however, assumes that the states of nodes in
the network are independent of each other. Such a spatial
independence assumption can lead to overestimating the
spreading ability of an infection (Chen, 2016; Chen and Ji,
2005; Mieghem et al., 2009). Intuitively, the states of nodes
in a network are positively correlated, and two neighbouring
nodes tend to be either both infected or both susceptible.
Moreover, through simulations and theoretical analysis,
Givan et al. (2011) found that the epidemic threshold from
Chakrabarti et al. (2008) and Mieghem et al. (2009) cannot
accurately reflect the actual epidemic threshold in some
types of networks.

The goal of this work is to find a more accurate
epidemic threshold in networks. Specifically, we attempt to
answer the following questions:

• Can spatial dependence among nodes affect the
epidemic threshold? If so, how significantly?

• How can we derive a more accurate epidemic
threshold, taking into consideration a certain spatial
dependence?

• Can the birth rate and the death rate affect the spatial
dependence and thus the epidemic threshold? If so,
how?

To answer these questions, we start with a general
mathematical framework on modelling the spread of
epidemics in networks and point out the difficulty in
finding a closed-form expression. We then focus on
approximating the complex spatial dependence among
nodes in a network. Specifically, we consider two spatial
approximation methods: spatial independence and spatial
Markov dependence. The spatial Markov dependence
approximation is motivated by the Markov random
field (MRF) (Wikipedia, 2015), which has been widely
applied in image processing. We discover that the spatial
independence model leads to the epidemic threshold
proposed in the previous work in Chakrabarti et al. (2008)

and Mieghem et al. (2009). By applying the mean-field
approach, we derive a closed-form expression for the
epidemic threshold in an arbitrary network based on
the spatial Markov dependence assumption. We then use
simulations to evaluate the performance of our derived
epidemic threshold. We summarise our discoveries and
contributions in the following:

• We find that spatial dependence among nodes affects
the epidemic threshold significantly and show that the
epidemic threshold in a network depends on not only
the largest eigenvalue of its adjacency matrix, but
also the spatial correlation coefficient between
neighbouring nodes. That is, the epidemic threshold is
indeed 1/λmax(A)(1− ρ), where ρ is the average
spatial correlation coefficient between neighbouring
nodes.

• Through extensive simulation studies in different
networks including regular graphs, synthesised
irregular graphs, and a real topology, we show that
our proposed threshold better reflects the actual
epidemic threshold than the threshold from
Chakrabarti et al. (2008) and Mieghem et al. (2009).

• We show, through both analysis and simulations, that
the epidemic threshold also depends on both the death
rate and the birth rate. It is noted that the death rate is
often assumed to be 1 in previous work (Ferreira
et al., 2012; Ganesh et al., 2005). However, we find
that the epidemic threshold decreases when the death
rate increases, whereas the threshold increases when
the birth rate increases.

• We also discover that the spatial Markov dependence
assumption applied in equation (11) is indeed a
maximum entropy estimator.

Although we focus only on the SIS model in this paper, our
conclusions on epidemic thresholds can be well extended
to other epidemiological models, such as arbitrary cascade
models studied in Prakash et al. (2011).

The remainder of this paper is structured as follows.
Section 2 introduces the background on the system model,
and Section 3 provides a general mathematical framework
and spatial approximation models. Section 4 derives
epidemic thresholds in regular graphs, whereas Section 5
provides an analysis on the epidemic thresholds in an
arbitrary network. Section 6 evaluates the performance of
our proposed threshold and compares it with the previous
work and simulation results. Section 7 discusses the related
work. Finally, Section 8 concludes this paper.

2 System model

We use G(V,E) to represent a network, where V is the set
of nodes and E is the set of edges (or links). |V | denotes the
number of nodes in the network. In this work, we consider
undirected graphs, i.e., if an edge (i, j) ∈ E, then (j, i) ∈
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E. Let Ni = {j|(j, i) ∈ E} be a neighbourhood of node i.
|Ni| denotes the number of neighbours of node i.

We study the problem of epidemic spread in a network
using the classic SIS model. Specifically, a node or a
computer in a network can be either infected or susceptible.
A susceptible node can be infected by one of its already
infected neighbours with a birth rate (or an infection rate)
β, where 0 < β ≤ 1. On the other hand, an infected node
can be cured and change back to be susceptible with a death
rate (or a recovery rate) δ, where 0 < δ ≤ 1. As applied in
Chakrabarti et al. (2008), Chen and Ji (2005), Ganesh et al.
(2005) and Mieghem et al. (2009), we assume that the birth
rate (or the death rate) is the same for all nodes and does
not change with time.

Let τ = β/δ be the ratio between the birth rate and the
death rate. The epidemic threshold, τc, is defined as when
τ ≤ τc, the epidemic dies out, and no node is infected; and
when τ > τc, a nonzero fraction of nodes remain infected
for a long time. In previous work (Chakrabarti et al., 2008;
Mieghem et al., 2009), it has been shown that the epidemic
threshold is

τc,ind =
1

λmax(A)
, (1)

where λmax(A) is the largest eigenvalue of the adjacency
matrix A of the network. However, this threshold is derived
based on the assumption of independence among nodes and
has been shown to be unable to accurately capture the actual
epidemic threshold (Givan et al., 2011).

A network can be classified into two categories: regular
graphs and irregular graphs. For a regular graph, the size of
the neighbourhood is the same for all nodes. That is, |Ni| =
k, for ∀i ∈ V , where k denotes the average nodal degree.
Typical regular graphs include ring, lattice, and complete
graphs, where k = 2, 4, and |V | – 1, respectively. For a
regular graph, λmax(A) = k, and thus equation (1) becomes

τc,ind =
1

k
. (2)

For an irregular graph, different nodes can have a different
number of neighbours. Typical synthesised irregular graphs
include ER random graphs, exponential random graphs,
and power-law topologies. In an ER random graph, each
pair of nodes is connected with a predefined probability
p (Erdös and Rényi, 1960). As a result, the probability
distribution of the nodal degree is a binomial distribution,
as shown in Figure 5(a). A synthesised exponential random
graph is formed by adding new nodes into the graph.
Each newly added node connects to existing nodes with
an equal likelihood (i.e., uniform attachment) (Barabási and
Albert, 1999; Jackson and Rogers, 2007). The probability
distribution of the nodal degree is an exponential function
of the nodal degree, as shown in Figure 5(b). A synthesised
power-law topology is formed in a way similar to the
synthesised exponential random graph, by adding new
nodes into the topology. But the probability that a newly
added node is connected to an existing node is proportional
to the nodal degree of this existing node (i.e., preferential
attachment) (Barabási and Albert, 1999; Barabási et al.,

1999). Thus, the probability distribution of the nodal degree
shows a scale-free property, i.e., a linear relationship in the
log-log plot, as shown in Figure 5(c).

Most real topologies are irregular graphs. Some real
topologies can be found online, such as Pajek datasets
(Batagelj and Mrvar, 2006) and SNAP (2014).

3 Mathematical framework

In this section, we first present a general mathematical
framework on modelling the spread of epidemics in
networks and point out the difficulty in finding a
closed-form expression. We then introduce two spatial
approximation models.

We consider a discrete-time system and refer to the
model presented in our previous work (Chen and Ji, 2005)
as the starting point. Specifically, we assume that the time
interval between time steps is 1, so that the birth rate and
the death rate are the probabilities in our study. Let Xi(t)
be the state of node i at time t (t ≥ 0), i.e.,

Xi(t) =

{
0, if node i is susceptible at time t;
1, if node i is infected at time t.

(3)

If node i is infected at time t, it will become susceptible
with probability δ at time t+ 1, i.e.,

P (Xi(t+ 1) = 0|Xi(t) = 1) = δ. (4)

This probability is also called the death rate. On the other
hand, if node i is susceptible at time t, it will be infected
by its infected neighbours with probability

Ii(t) = P (Xi(t+ 1) = 1|Xi(t) = 0). (5)

Thus, the state of node i at time t+ 1 can be derived based
on its state at time t and Ii(t), i.e.,

P (Xi(t+ 1) = 1) = P (Xi(t) = 1)(1− δ)

+ P (Xi(t) = 0)Ii(t). (6)

Since an infected node will infect its susceptible neighbour
with birth rate β, the probability that susceptible node
i is not infected by its neighbour j at time t+ 1 is
(1− β)xj(t), where xj(t) ∈ {0, 1} is the realisation of
Xj(t). Note that infected neighbours will attempt to
compromise node i independently. Hence, given node i
is susceptible at time t and the states of its neighbours,
the probability that it becomes infected at time t+ 1 is
1−

∏
j∈Ni

(1− β)xj(t). Let XNi(t) = {Xj(t)|j ∈ Ni} and
xNi(t) = {xj(t)|j ∈ Ni}, representing the (random) states
and their realisation of the neighbours of node i at time t.
Then,

Ii(t)

=
∑
xNi

(t)

P (Xi(t+ 1) = 1,XNi(t) = xNi(t)|Xi(t) = 0)

=
∑
xNi

(t)

P (XNi(t) = xNi(t)|Xi(t) = 0)[1
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−
∏
j∈Ni

(1− β)xj(t)

]

= 1− E

 ∏
j∈Ni

(1− β)Xj(t)

∣∣∣∣∣∣Xi(t) = 0

 , (7)

where E[|] denotes the conditional expectation.
Note that equation (7) can be applied to arbitrary

topologies, including both regular and irregular graphs.
The difficulty of finding a closed-form expression to this
equation lies in the spatial dependence between nodes, i.e.,
computing P (XNi

(t) = xNi
(t)|Xi(t) = 0). Intuitively, the

state of node i depends on its neighbours. That is, Xi(t)
and Xj(t) (where j ∈ Ni) are not independent. Indeed,
they are positively correlated (Chen and Ji, 2005; Mieghem
et al., 2009). Moreover, the state of node j depends
on its own neighbours. In such a way, all nodes in a
connected network are not independent. The assumption of
independence among nodes, applied in the previous work
(Chakrabarti et al., 2008; Mieghem et al., 2009), is clearly
not accurate.

On the other hand, if node i has k neighbours (where
k is usually not a small number), it has 2k possible
combinations for calculating P (XNi(t) = xNi(t)|Xi(t) =
0), which is too expensive to compute. Therefore, to
find P (XNi(t) = xNi(t)|Xi(t) = 0) analytically, we have
to consider some approximation. Here, we study two spatial
approximation methods: spatial independence and spatial
Markov dependence.

3.1 Independent model

In the independent model, we assume spatial independence
between nodes, i.e., the states of all nodes are independent,
as applied in the previous work (Chakrabarti et al., 2008;
Mieghem et al., 2009). Then, we have

P (XNi(t) = xNi(t)|Xi(t) = 0)

=
∏
j∈Ni

P (Xj(t) = xj(t)). (8)

Applying such a spatial independence assumption to
equation (7), we find

Ii(t) = 1−
∏
j∈Ni

E
[
(1− β)Xj(t)

]
= 1−

∏
j∈Ni

[1− βP (Xj(t) = 1)] . (9)

Set pi,t = P (Xi(t) = 1). Putting equation (9) into
equation (6), we have

pi,t+1 = 1− δpi,t − (1− pi,t)
∏
j∈Ni

(1− βpj,t). (10)

Note that equation (10) can be applied to both regular and
irregular graphs.

3.2 Markov model

Inspired by the local Markov property of MRF (Wikipedia,
2015), we assume spatial Markov dependence, i.e., Xj(t)’s
(where j ∈ Ni) are independent given Xi(t) = 0. Then, we
have

P (XNi(t) = xNi(t)|Xi(t) = 0)

=
∏
j∈Ni

P (Xj(t) = xj(t)|Xi(t) = 0). (11)

Such a conditional independence assumption considers a
certain dependence between node i and its neighbours
and better characterises the spatial dependence among
nodes than the spatial independence assumption. Moreover,
equation (11) is indeed a maximum entropy estimator of
the conditional joint distribution (Cover and Thomas, 1991;
Good, 1963). In Appendix, we show this interesting result.

We apply the spatial Markov dependence assumption to
equation (7) and find

Ii(t) = 1−
∏
j∈Ni

E
[
(1− β)Xj(t)

∣∣∣Xi(t) = 0
]

= 1−
∏
j∈Ni

[1− βP (Xj(t) = 1|Xi(t) = 0)] . (12)

Set pi,t = P (Xi(t) = 1) and pj|i,t = P (Xj(t) = 1|Xi(t) =
0). Putting equation (12) into equation (6), we have

pi,t+1 = 1− δpi,t − (1− pi,t)
∏
j∈Ni

(1− βpj|i,t). (13)

Note that equation (13) can be applied to both regular and
irregular graphs.

4 Epidemic thresholds in regular graphs

In this section, we apply two different spatial approximation
methods to derive closed-form expressions for the epidemic
threshold in regular graphs: the independent model and the
Markov model. We then use the symmetric property of
regular graphs to analyse the spatial correlation in regular
graphs.

4.1 Independent model

In equation (10), we consider the steady state. Set pi =
limt→∞ pi,t, so equation (10) becomes

pi = 1− δpi − (1− pi)
∏
j∈Ni

(1− βpj). (14)

When a regular graph is considered, due to its symmetric
property, we have pi = pj = p, for ∀i, j. That is,

p = 1− δp− (1− p)(1− βp)k, (15)

which leads to

(1− βp)k =
1− (δ + 1)p

1− p
. (16)
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Set f(p) = (1− βp)k and g(p) = 1−(δ+1)p
1−p . Then the

solutions to the above equation are the intersection points
between curves f(p) and g(p). Note that f(0) = g(0) =
1, f(1) ≥ 0, and limp→1 g(p) → −∞. Moreover, f ′(p) =
−βk(1− βp)k−1 < 0, and g′(p) = − δ

(1−p)2 < 0. Thus,
whether equation (16) has a non-zero solution depends on
the slopes of f(p) and g(p) at p = 0. Figure 1 demonstrates
two examples of f(p) and how the slopes at p = 0 affect
the intersection points between f(p) and g(p). Hence, to
get a non-zero solution for equation (16), f ′(0) needs to be
smaller than g′(0). That is, β

δ > 1
k . Hence,

τc,ind =
1

k
, (17)

which is identical to equation (2) and has been shown in
Chakrabarti et al. (2008) and Mieghem et al. (2009) for
the epidemic threshold in regular graphs. Here, we apply a
different approach to obtain the same result.

Figure 1 Demonstration of the functions of f(p) and g(p)
(see online version for colours)

4.2 Markov model

Similar to the independent model, we consider the steady
state in the Markov dependent model. Set pi = limt→∞ pi,t
and pj|i = limt→∞ pj|i,t, so equation (13) becomes

pi = 1− δpi − (1− pi)
∏
j∈Ni

(1− βpj|i). (18)

Consider the regular graph with an average nodal degree of
k. Due to the symmetric property of regular graphs, we can
set p = pi for ∀i, and q = pj|i for ∀(i, j) ∈ E. Then,

p = 1− δp− (1− p)(1− βq)k. (19)

Define ρ as the spatial correlation coefficient between
neighbouring nodes i and j (i.e., ∀(i, j) ∈ E) in the steady
state. Setting Xi = limt→∞ Xi(t), ∀i ∈ V , we have

ρ =
E[XiXj ]− E[Xi]E[Xj ]√

V ar[Xi]V ar[Xj ]

=
P (Xi = 1, Xj = 1)− p2

p(1− p)
. (20)

Thus,

E[XiXj ] = P (Xi = 1, Xj = 1) = p(1− p)ρ+ p2, (21)

and

q =
P (Xj = 1)− P (Xj = 1, Xi = 1)

P (Xi = 0)

= (1− ρ)p. (22)

Therefore, equation (19) becomes

p = 1− δp− (1− p)[1− β(1− ρ)p]k. (23)

That is,

[1− β(1− ρ)p]k =
1− (δ + 1)p

1− p
. (24)

Note that when ρ = 0, which means that neighbouring nodes
are independent, equation (24) is reduced to equation (16).

Set h(p) = [1− β(1− ρ)p]k and g(p) = 1−(δ+1)p
1−p .

Then the solutions to equation (24) are the intersection
points between curves h(p) and g(p). Note that h(0) = g(0)
= 1, h(1) ≥ 0, and limp→1 g(p) → −∞. Moreover, h′(p) =
−βk(1− ρ)[1− β(1− ρ)p]k−1 < 0, and g′(p) = − δ

(1−p)2

< 0. Thus, whether equation (24) has a non-zero solution
depends on the slopes of h(p) and g(p) at p = 0. That
is, h′(0) has to be smaller than g′(0) to get a non-zero
solution for equation (24). That is,

β

δ
>

1

k(1− ρ)
. (25)

Hence, the epidemic threshold is

τc,cor =
1

k(1− ρ)
. (26)

when ρ > 0, τc,cor > τc,ind for the same regular graph. That
is, ignoring the spatial dependence among nodes, τc,ind
underestimates the actual epidemic threshold. On the other
hand, τc,cor incorporates a certain spatial dependence and
depends on the correlation coefficient between neighbouring
nodes.

4.3 Spatial correlation

The epidemic threshold in equation (26) depends on the
correlation coefficient ρ. In this section, we will show that
in a regular graph, under the spatial Markov assumption,
ρ is determined by the birth rate β and the death rate δ.
Specifically, set Puv(t) = P (Xi(t) = u,Xj(t) = v), where
u, v ∈ {0, 1}, and quv(t) = P (Xi(t+ 1) = 1, Xj(t+ 1) =
1|Xi(t) = u,Xj(t) = v) for simplifying the notation. Thus,

P11(t+ 1) =
∑

u,v∈{0,1}

[Puv(t)quv(t)], (27)
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where

q11(t) = (1− δ)2

q10(t) = (1− δ)

1− (1− β)
∏

l∈Nj−{i}

(1− βpl|j,t)


q01(t) = (1− δ)

1− (1− β)
∏

l∈Ni−{j}

(1− βpl|i,t)


q00(t) =

1− ∏
l∈Nj−{i}

(1− βpl|j,t)


1− ∏

l∈Ni−{j}

(1− βpl|i,t)

 .

The derivation of quv(t)’s is based on the spatial Markov
assumption (Chen and Ji, 2005) and follows the same
spirit of deriving Ii(t) in equation (12). By setting Puv =
limt→∞ Puv(t) and considering t → ∞ and regular graphs,
equation (27) turns into

P11 = P11(1− δ)2 + P00

[
1− (1− βq)k−1

]2
+(P10 + P01)(1− δ)

[
1− (1− β)(1− βq)k−1

]
. (28)

Note that P01 = P10 = p− P11, P00 = 1− 2p+ P11, and
q = (1− ρ)p. Thus, setting r = (1− βq)k−1 = [1− β(1−
ρ)p]k−1, we have

P11 = P11(1− δ)2 + (1− 2p+ P11)(1− r)2

+ 2(p− P11)(1− δ)[1− (1− β)r]. (29)

Since we are interested in the epidemic threshold, we focus
on the case when p is very small and approaches 0 from the
right. When p → 0+, by ignoring the higher order of p, in
equation (21), P11 → ρp. Similarly, r → 1− (k − 1)(1−
ρ)βp. Thus, when p → 0+, the item (1− 2p+ P11)(1−
r)2 in equation (29) is in the order of p2 and does not
contain constant or p term, and can be safely ignored.
Moreover, the item 1− (1− β)r becomes β. Therefore,
when p → 0+, equation (29) becomes

(2δ − δ2)P11 = 2β(1− δ)(p− P11). (30)

Putting P11 = ρp into the above equation, we have

ρ =
2β(1− δ)

(2δ − δ2) + 2β(1− δ)
,when p → 0+. (31)

It is noted that from equation (31), 0 ≤ ρ < 1. Specifically,
when δ = 1, ρ = 0. That is, if we assume that the death
rate is 1 as proposed in previous work such as Ferreira
et al. (2012) and Ganesh et al. (2005), there is no spatial
dependence from our analysis. On the other hand, however,
if δ < 1, ρ > 0, i.e., the spatial correlations between
neighbouring nodes can affect the epidemic threshold. Since
∂ρ
∂δ < 0 and ∂ρ

∂β > 0, ρ increases when δ decrease or
β increases. Another observation is that our derived ρ is
independent of the number of neighbours, i.e., k.

Putting equation (31) into equation (26), we find the
epidemic threshold in regular graphs:

τc,mar =
2− δ

2(k − 1)− (k − 2)δ
. (32)

It can be seen that if δ = 1, τc,mar = τc,ind. If δ < 1,
however, τc,mar > τc,ind. Moreover, since dτc,mar

dδ < 0,
τc,mar increases as δ decreases. Thus, 0 < δ ≤ 1 leads to

1

k
≤ τc,mar <

1

k − 1
. (33)

That is, the epidemic threshold in regular graphs is
in [ 1k ,

1
k−1 ). Moreover, although β does not appear in

equation (32), τc,mar does depend on β. This can be shown
in equations (26) and (31): when β increases, ρ increases,
and therefore, τc,mar increases.

Note that the deviation of τc,mar is based on the spatial
Markov dependence assumption and does not consider
all spatial dependence among nodes. As we will show
in Subsection 6.2, although τc,mar performs much better
than τc,ind, it does not closely follow the actual epidemic
threshold.

5 Epidemic thresholds in arbitrary networks

In this section, we extend our analysis on epidemic
thresholds from regular graphs to arbitrary networks.
Similar to the analysis for regular graphs, here we study
two spatial approximation methods for arbitrary networks:
spatial independence and spatial Markov dependence.

5.1 Independent model

In an independent model, the states of all nodes in a
network are assumed to be independent, as shown in
equations (8) and (9). Note that equation (10) can be also
applied to an arbitrary network. We find that equation (10)
is similar to equation (7) in Chakrabarti et al. (2008). The
only difference between these two equations is that the
second term on the right hand side of equation (10) does not
include

∏
j∈Ni

(1− βpj,t) [i.e., ζi,t+1 in Chakrabarti et al.
(2008)]. However, as pointed out by both Chakrabarti et al.
(2008) and Givan et al. (2011), both equations lead to the
same result on the epidemic threshold:

τc,ind =
1

λmax(A)
, (34)

where λmax(A) is the largest eigenvalue of the adjacency
matrix A of the network. Please refer to Chakrabarti
et al. (2008) for the detailed derivation from equation (10)
to equation (34). Comparing with the previous work
(Chakrabarti et al., 2008), here we derive it under the
general mathematical framework to understand the effect of
spatial dependence.
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5.2 Markov model

In a Markov model, given node i is susceptible, the states
of all neighbours of node i are assumed to be independent,
as shown in equations (11) and (12). Note that equation (13)
can be also applied to an arbitrary network.

To simplify pj|i,t in equation (13), we define ρi,j,t as the
spatial correlation coefficient between neighbouring nodes i
and j at time t for ∀(i, j) ∈ E. That is,

ρi,j,t =
E[Xi(t)Xj(t)]− E[Xi(t)]E[Xj(t)]√

V ar[Xi(t)]V ar[Xj(t)]

=
P (Xi(t) = 1, Xj(t) = 1)− pi,tpj,t√

pi,t(1− pi,t)pj,t(1− pj,t)
. (35)

Since we are considering the epidemic threshold, i.e., the
condition at which the epidemic will die out, it is safe to say
that when t becomes large, both pi,t and pj,t become small
and approach to 0, which allows us to simplify the equation.
That is, when t → ∞, 1− pi,t → 1, and 1− pj,t → 1. Then

P (Xi(t) = 1, Xj(t) = 1) ≈ ρi,j,t
√
pi,tpj,t + pi,tpj,t

≈ ρi,j,t
√
pi,tpj,t. (36)

The second approximation comes from the observations that
−1 ≤ ρi,j,t ≤ 1 and pi,tpj,t is a higher order term than√
pi,tpj,t when t is very large.
Considering pj|i,t in equation (13) and approximating

P (Xi(t) = 0) to be 1, we have

pj|i,t =
P (Xj(t) = 1)− P (Xi(t) = 1, Xj(t) = 1)

P (Xi(t) = 0)

≈ pj,t − ρi,j,t
√
pi,tpj,t

= pj,t

(
1− ρi,j,t

√
pi,t
pj,t

)
. (37)

It is noted that when regular graphs are considered and
t → ∞, pi,∞ = pj,∞ = p, and ρi,j,∞ = ρ, where ρi,j,∞
does not depend on edge (i, j). Therefore, in regular
graphs, pj|i,∞ = (1− ρ)p, as shown in equation (22). For
an irregular graph, on the other hand, due to the fact that
different nodes can have a different number of neighbours,
pi,∞ and pj,∞ can be different, and ρi,j,∞ depends on edge
(i, j). To obtain a closed-form expression, however, here
we consider the first-order mean-field approach (Wikipedia,
2011; Opper and Saad, 2001). The mean-field method
approximates and replaces the effect of all interactions
with a single average interaction. In our case, we replace
ρi,j,∞ with ρ, which is the average spatial correlation
coefficient of neighbouring nodes in a topology at the
epidemic threshold. Moreover, note that nodes i and j are
neighbours and connect to each other. Thus, when t → ∞,
we further assume that

√
pi,t

pj,t
≈ 1, which can reduce the

complexity of the equation. In such a way, we obtain the
following equation for both regular and irregular graphs:

pj|i,t = pj,t(1− ρ), (38)

when t → ∞ at the epidemic threshold.

Putting equation (38) into equation (13), we find

pi,t+1

= 1− δpi,t − (1− pi,t)
∏
j∈Ni

(1− βpj,t(1− ρ)). (39)

Following the similar procedure of deriving equation (34)
from equation (10), we can find that the epidemic threshold
based on equation (39) is

τc,cor =
1

λmax(A)(1− ρ)
. (40)

It is noted that when a regular topology is considered,
equation (40) is reduced to τc,cor in equation (26).
Moreover, it can be seen that different from τc,ind in
equation (34), τc,cor considers a certain spatial dependence.
If ρ = 0, τc,cor = τc,ind. Otherwise, when ρ > 0, as shown
in previous work (Chen and Ji, 2005; Mieghem et al.,
2009), τc,cor > τc,ind. In other words, our analysis shows
that τc,ind underestimates the actual epidemic threshold by
ignoring the spatial dependence among nodes.

6 Simulation results and performance evaluation

In this section, we evaluate the performance of the
estimation of the epidemic threshold through simulations.
Specifically, we first describe the setup of our simulations.
We then compare different estimators with the simulation
results for both regular and synthesised irregular graphs.
Finally, we evaluate the performance of our proposed
epidemic threshold in a real topology.

6.1 Simulation setup

We simulate the spread of epidemics with different birth
rates and death rates in different topologies. The simulator
is based on discrete time. In each time step, if node i is
infected, it will become susceptible with the probability of
δ at the next time step; otherwise, it will be infected by
its infected neighbour j with the probability of β. Here,
probabilities are created by a random number generator. At
the beginning of the simulations, we randomly assign half
of the nodes to be infected. We run each simulation long
enough so that it reaches the steady state. For each scenario,
we run 1,000 times using different seeds. Figure 2 shows
the sample runs of epidemic spread in a ring graph with a
fixed death rate (i.e., δ = 0.1) and different birth rates (i.e.,
β = 0.13, 0.14, and 0.15). The figure plots the number of
infected nodes over time. In each sub-figure, the ‘5%’ curve
indicates that the epidemic spreads no faster than this curve
in 50 out of 1,000 simulation runs. The similar definition
is applied to the ‘25%’, ‘50%’, ‘75%’, and ‘95%’ curves.
Moreover, the ‘mean’ curve is the average over 1,000 runs.
It can be seen that in the ‘mean’ curve, the number of
infected nodes can be under 1 for some time steps. This is
because in some runs the infection has already died out in
earlier time steps. Note that we use the log scale for the
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y-axis to make the spread process more visible. It can be
seen that when β is small and thus the ratio between β and
δ is below the epidemic threshold, the infection dies out
quickly with an exponential rate, as shown in Figure 2(a).
When the ratio between β and δ is around the epidemic
threshold, the infection still dies out, but with a much
slower rate, as indicated in Figure 2(b). When the ratio
between β and δ is above the epidemic threshold, a nonzero
fraction of nodes are infected, and the infection becomes
epidemic, as shown in Figure 2(c).

Figure 2 Sample runs of epidemic spread in a ring graph
(δ = 0.1 and |V | = 1,000), (a) below threshold
(β = 0.13) (b) around threshold (β = 0.14) (c) above
threshold (β = 0.15) (see online version for colours)

(a)

(b)

(c)

To find the epidemic threshold (i.e., τc) for a given death
rate δ, we apply binary search as described in Algorithm 1,
where ϵ is a small number (e.g., ϵ = 0.01). Among the
inputs of the algorithm, βlow is a valid birth rate that causes
the epidemic to die out (e.g., βlow = 0), whereas βhigh

maps to a case when the epidemic survives (e.g., βhigh

= 1).

Algorithm 1 Finding epidemic threshold τc

Input: δ, βlow, βhigh, ϵ
Output: τc
while (βhigh − βlow) > ϵ ∗ βlow do

β = (βhigh + βlow)/2
Simulate epidemic spread using β and δ
Average the number of final infections over 1,000 runs and
get avg inf num
if avg inf num > 0 then

βhigh = β
else

βlow = β
end if

end while
τc = βlow/δ

To obtain τc,cor in equation (40), we need to find the
average spatial correlation coefficient ρ at the epidemic
threshold through simulations. It is noted that at the
epidemic threshold, the epidemic dies out, and thus we
cannot calculate the spatial correlation coefficient from
simulations. Moreover, when β/δ is just above the epidemic
threshold and the average number of final infections is
close to 0, there are few samples of infected nodes, which
makes the estimated correlation coefficient inaccurate. On
the other hand, when the average number of final infections
is large, the calculated coefficient is accurate, but may
be very different from ρ in equation (40). To obtain a
reasonable estimate of ρ, we apply the value of the average
correlation coefficient when the average number of final
infections is between 1 and 10. The details of finding
spatial correlation coefficient ρ are given in Algorithm 2,
where τc is the epidemic threshold when the death rate is δ,
ϵβ is a small value used for increasing the birth rate (e.g.,
ϵβ = 0.001), and ϵn is the threshold value used to determine
when to stop searching for the correlation coefficient and
is between 1 and 10.

Algorithm 2 Finding spatial correlation coefficient ρ

Input: δ, τc, ϵβ , ϵn
Output: ρ
Set β = τc × δ, βs = ϵβ ∗ β, and found = 0
while found = 0 do

β = β + βs

Simulate epidemic spread using β and δ
Average the number of final infections over 1,000 runs and
get avg inf num
if avg inf num ≥ ϵn then
Average the correlation coefficient over 1,000 runs and
get the empirical correlation coefficient ρe
ρ = ρe
found = 1

end if
end while

6.2 Regular graphs

We compare the performance of three estimators of the
epidemic threshold [i.e., τc,ind in equations (17), τc,mar in
equation (32), and τc,cor in equation (40)] in regular graphs
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with simulation results. Figure 3 shows epidemic thresholds
with different death rates (0 < δ ≤ 1) for ring (k = 2),
lattice (k = 4), and complete graphs (k = |V | − 1 = 99).
It can be seen that τc,mar is a more accurate estimator
than τc,ind, whereas τc,cor has the best performance
among three estimators. For example, in ring graphs, when
δ = 0.1, the actual epidemic threshold is 1.4, whereas
τc,ind = 0.5, τc,mar = 0.95, and τc,cor = 1.41.
There is about 50% performance improvement from the
independence model (i.e., τc,ind) to the Markov model
(i.e., τc,mar), and τc,cor is the most accurate estimate
of the actual epidemic threshold. Therefore, the spatial
independence assumption, which has been widely applied
in previous work (Chakrabarti et al., 2008; Mieghem et al.,
2009), significantly underestimates the epidemic threshold,
whereas our proposed Markov model can incorporate a
certain spatial dependence and predict the threshold more
accurately. Moreover, while τc,ind is independent of δ,
our model is able to catch the tendency changes with δ.
For example, as indicated by Figures 3(a) and 3(b), both
simulation results and our model show that the epidemic
threshold decreases when the death rate increases.

Figure 3 Epidemic thresholds in regular graphs, (a) ring
(|V | = 1,000) (b) lattice (|V | = 2,500) (c) complete
(|V | = 100) (see online version for colours)

(a)

(b)

(c)

We further define the relative errors of the estimation for
τc,ind as

ϵind =
|τc,ind − τc|

τc
, (41)

where τc is the epidemic threshold from the simulation.
Similarly, we can define ϵcor for τc,cor. Figure 4 shows how
relative errors change with the death rate for three regular
graphs. We can see that for all cases, ϵcor < ϵind when
δ < 1. When δ is small and less than 0.5, ϵcor is less than
0.1 for all cases, whereas ϵind is greater than 0.2. On the
other hand, when δ is large and closes to 1, ϵcor is slightly
better than ϵind. Our evaluation shows that the epidemic
threshold depends heavily on the spatial correlation between
neighbouring nodes.

Figure 4 Relative errors of epidemic thresholds in regular
graphs (see online version for colours)

6.3 Synthesised irregular graphs

Next, we compare the performance of two estimators of
the epidemic threshold [i.e., τc,ind in equation (34) and
τc,cor in equation (40)] for synthesised irregular graphs.
Specifically, we simulate the spread of epidemics in three
representative irregular graphs: an ER random graph, an
exponential random graph, and a power-law topology. The
power-law topology was generated by BRITE (2001). The
nodal degree distributions of these three topologies are
plotted in Figure 5. It can be seen that the nodal degree
distribution of the synthesised ER random graph closely
follows a binomial distribution, whereas the nodal degree
distribution of the exponential random graph is exponential,
and that of the power-law topology is scale-free.

We compare the performance of τc,ind and τc,cor with
simulation results in Figure 6 for these three irregular
graphs. It can be seen that τc,cor fits much closer to
the actual epidemic threshold than τc,ind, especially when
the death rate is not large. Moreover, τc,cor can catch
the tendency changes with the death rate, i.e., the actual
epidemic threshold decreases when δ increases. We further
compare the relative errors of two estimators (i.e., ϵind
and ϵcor) in Figure 7. It is shown that for all cases,
ϵcor < ϵind. Moreover, when δ < 0.5, ϵind/ϵcor > 3, and
ϵcor < 0.16. It is apparent that the theoretical epidemic
threshold considering the spatial correlation (i.e., τc,cor)
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performs much better than the estimator based on the spatial
independence assumption (i.e., τc,ind).

Figure 5 Nodal degree distributions of irregular graphs
(|V | = 1,000), (a) ER random graph (p = 8

999
)

(b) exponential random graph (c) power-law topology
(exponent ≈ 2.4) (see online version for colours)

(a)

(b)

(c)

6.4 A real topology

We further evaluate the performance of two estimators
(i.e., τc,ind and τc,cor) in a real topology. Specifically, we
study the spread of epidemics in a co-authorship network
(Collaboration Network in Science of Networks, 2007).
This real topology is a collaboration network of scientists
working on network experiment and theory. We find that
the topology given by Collaboration Network in Science of
Networks (2007) is not connected. Hence, we only consider
the giant component of the topology, which contains 379
nodes and 914 edges. The nodal degree distribution of this
giant component is shown in Figure 8(a).

Figure 6 Epidemic thresholds in irregular graphs
(|V | = 1,000), (a) ER random graph
(λmax(A) = 9.03) (b) exponential random graph
(λmax(A) = 6.84) (c) power-law topology
(λmax(A) = 10.77) (see online version for colours)

(a)

(b)

(c)

Figure 7 Relative errors of epidemic thresholds in arbitrary
networks (see online version for colours)

We compare the performance of τc,ind and τc,cor with
simulation results in Figure 8(b). It can be seen that with
reference to the actual epidemic threshold, τc,cor is much
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more accurate than τc,ind. Figure 8(c) further plots ϵind
and ϵcor. It shows that for all cases, ϵcor < 0.32, whereas
ϵind > 0.48. Moreover, when δ ≤ 0.5, ϵcor < 0.18. As a
result, it is evident that the epidemic threshold depends
strongly on the spatial correlation among nodes.

Figure 8 Epidemic thresholds in a co-authorship network
(|V | = 379), (a) nodal degree distribution
(b) epidemic thresholds (c) relative errors
(see online version for colours)

(a)

(b)

(c)

7 Related work

It has been a long history of applying mathematical
modelling to study epidemic thresholds in networks (Daley
and Gani, 2001; Pastor-Satorras et al., 2015). After the
emergence of the internet, Kephart and White (1991) were
the first one to consider the spread of computer viruses
in the ‘homogeneous mixing’ topology and found that
the epidemic threshold is the reciprocal of the average
nodal degree. In their seminal papers, Pastor-Satorras and
Vespignani (2001, 2002) discovered that the epidemic

threshold is 0 in a power-law topology with an infinite
size and an exponent that ranges between 2 and 3, and
further considered the case when the size of the power-law
topology is finite. Moreover, Boguna et al. unraveled the
root cause of the absence of the epidemic threshold in
heterogenous networks in Boguna et al. (2013).

An important discovery on the epidemic threshold is that
the threshold for a network has shown to be the inverse of
the largest eigenvalue of its adjacency matrix, which was
first found by Chakrabarti et al. (2008) and Wang et al.
(2003). Mieghem et al. also showed this epidemic threshold
condition in networks through Markov chain modelling and
mean field theory in Mieghem et al. (2009). Ganesh et al.
(2005) rigorously pointed out that the inverse of the largest
eigenvalue of its adjacency matrix is the lower-bound of
the epidemic threshold through stochastic modelling and
graph theory. On the other hand, Givan et al. pointed out,
through simulations and theoretical analysis in Givan et al.
(2011), that the epidemic threshold from Chakrabarti et al.
(2008), Wang et al. (2003) and Mieghem et al. (2009) is
not accurate in many cases. In this work, we attempt to
derive a more accurate epidemic threshold in networks by
considering the spatial correlation among nodes. Although
our proposed epidemic threshold is still an approximation
to the actual threshold, we show that, through both analysis
and simulations, our estimator performs much better than
the threshold proposed in previous works (Chakrabarti
et al., 2008; Wang et al., 2003; Mieghem et al., 2009) in
various topologies.

It is noted that pairwise approximation for epidemic
thresholds has been studied in Cator and Mieghem
(2012) and Mata and Ferreira (2013), considering the
interactions between neighbouring nodes. However, our
work is fundamentally different from these works. First,
the deviation in Cator and Mieghem (2012) and Mata
and Ferreira (2013) is based on a continuous-time model,
whereas our analysis relies on discrete-time. We consider
that the actual epidemic process is a discrete-time event. A
detailed discussion of comparing the discrete-time epidemic
model with the continuous-time model can be found in
Chen et al. (2003). Second, whereas the previous works
provide neither a simple, clear physical meaning to the
results nor a closed-form expression, we do point out an
intuitive observation that the epidemic threshold is directly
affected by the spatial correlation coefficient between
neighbouring nodes and provide a closed-form solution.

Moreover, different from the previous work (Chen,
2016), this paper derives analytically the epidemic threshold
in arbitrary networks by using the general mathematical
framework and the mean-field approach, as well as showing
that equation (11) is a maximum entropy estimator.
Furthermore, we add the simulation results and performance
evaluation on epidemic thresholds in an exponential random
graph and a real topology (i.e., a co-authorship network).

Many works have studied the epidemic process and
the epidemic threshold in different types of networks. For
example, Chakrabarti et al. (2007) studied the epidemic
threshold in sensor and P2P networks, whereas Valler
et al. (2011) derived it in mobile ad hoc networks. Ogura
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and Preciado (2016) extended the study to time-varying
large-scale networks. Wei et al. (2013) investigated the
propagation of two competing memes in a composite
network. Moreover, Sahneh et al. (2013) used the
generalised epidemic mean-field model to predict epidemic
spread over multilayer complex networks, whereas Sanatkar
et al. (2016) analysed the epidemic threshold in dynamic
switching networks. None of these works have considered
the effect of spatial dependence on the epidemic threshold.

Information diffusion and influence spread in
online social networks (OSNs) bear resemblance to
the epidemic process in networks. Many scenarios of
information cascading in OSNs have been modeled
through epidemiological models. For example, the popular
independent cascade model on social influence, studied
in Kempe et al. (2003), can be described as a special
susceptible-infected-recovered (SIR) model (Prakash et al.,
2011). The cascading behaviour in large blog graphs has
been characterised by the classic SIS model in Leskovec
et al. (2007). Moreover, the susceptible-infected-cured
(SIC) model is proposed in Wang and Wang (2016) to
study the propagation of conflict information (e.g., rumour
and anti-rumour) in OSNs.

8 Conclusions

In this work, we have proposed a new epidemic threshold
by taking into consideration a certain spatial dependence.
Specifically, we have exploited the assumption of Markov
spatial dependence and shown analytically that the epidemic
threshold in networks indeed depends on the correlation
coefficient between neighbouring nodes. Through extensive
simulations, we have demonstrated that our proposed
epidemic threshold better characterises the actual threshold
than the threshold from Chakrabarti et al. (2008) and
Mieghem et al. (2009) in arbitrary networks such as
lattice, ER random graphs, power-law topologies, and a real
co-authorship network. To the best of our knowledge, this
is the first attempt in quantitatively understanding the effect
of spatial dependence on epidemic thresholds in networks.

Our discoveries on epidemic thresholds have important
implications and applications for predicting and controlling
the dynamics of the epidemic spreading process. Compared
with the previous work, our proposed epidemic threshold
provides a more accurate prediction on whether an infection
will die out or become epidemic. Especially, when β/δ is
between 1/λmax(A) and 1/λmax(A)(1− ρ) in a network,
it is predicted in previous work (Chakrabarti et al., 2008;
Mieghem et al., 2009) that the infection will become
epidemic; however, we show that the infection actually
dies out. Moreover, an objective function for controlling
epidemic spread should consider both the largest eigenvalue
of the topology and the spatial correlation between
neighbouring nodes (Nowzari et al., 2016).
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Appendix

Maximum entropy estimator

In this appendix, we show that equation (11) is a maximum
entropy estimator (Cover and Thomas, 1991; Good, 1963).
Without loss of generality, we assume that node i has m
neighbours and name these neighbours from 1 to m. That
is, m = |Ni|, and j = 1, 2, ..., m for Xj(t) in equation (11).
We use ij to denote the state of the neighbour j of node i
at time t, i.e., ij = xj(t) (note that ij = 0 or 1). We apply
the simplified notation

pi1,i2,··· ,im = P (XNi(t) = xNi(t)|Xi(t) = 0) (42)
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to denote the conditional joint distribution, and

pij = P (Xj(t) = xj(t)|Xi(t) = 0) (43)

to denote the conditional marginal distribution.
The entropy of the conditional joint distribution is

J = −
∑

i1,i2,··· ,im

pi1,i2,··· ,im log pi1,i2,··· ,im , (44)

and the restraints are

pik =
∑

i1,··· ,ik−1,ik+1,··· ,im

pi1,i2,··· ,im , (45)

where k = 1, 2, ...., m.
To maximise the entropy J , we apply the Lagrange’s

method. That is, construct the Lagrangian function

L(pi1,i2,··· ,im ;α
(k)
ik

, ∀k) = J −
m∑

k=1

α
(k)
ik

(pik

−
∑

i1,··· ,ik−1,ik+1,··· ,im

pi1,i2,··· ,im

)
. (46)

Using the theorem of Lagrange, we differentiate function
L(pi1,i2,··· ,im ;α

(k)
ik

, ∀k) with respect to pi1,i2,··· ,im , set the
result to zero, and then find

1 + log pi1,i2,··· ,im =
m∑

k=1

α
(k)
ik

. (47)

Note that

log p0,i2,··· ,im − log p1,i2,··· ,im = α
(1)
0 − α

(1)
1 . (48)

Since p0,i2,··· ,im + p1,i2,··· ,im = pi2,··· ,im , we find that

pi1,i2,··· ,im = f1(i1)pi2,··· ,im . (49)

By induction,

pi1,i2,··· ,im = f1(i1)f2(i2) · · · fm(im). (50)

Applying the restraints (45), we find that fk(ik) = pik ,
where k = 1, 2, ..., m. Therefore,

pi1,i2,··· ,im =
m∏

k=1

pik . (51)

In other words, equation (11) is a maximum entropy
estimator.


