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Abstract: Botnets have become one of top threats to the Internet. Many detection methods have
been developed to distinguish botnet behaviors from normal human behaviors. Future botnets,
however, may incorporate the characteristics of human beings and weaken the existing detection
techniques. In this work, we present a novel intelligent botnet, called the delay-tolerant botnet,
that intentionally adds random delays to the command propagation and endeavors to avoid the
detection. We then study the scalability of delay-tolerant botnets. Specifically, we apply mathe-
matical analysis to derive the average delay required to distribute a command to all bots in three
types of command and control architectures: centralized, distributed, and hybrid delay-tolerant
botnets. We find that in all cases, the delay increases approximately logarithmically with the
number of bots, indicating that the delay-tolerant botnets are scalable. Finally, we verify the
analytical results by simulations.
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1 Introduction

A botnet is a network of compromised computers that are or-
ganized by a malicious attacker called the botmaster. Botnets
have been exploited to set off denial-of-service (DoS) attacks,
send spam emails, and search for confidential information. For
example, the Storm botnet affected tens of millions of hosts and
was used for spam emails and distributed DoS attacks in 2007
[15]. Therefore, botnets have become one of top threats to the
current Internet.

A botmaster uses command and control (C&C) channels to
deliver commands to all bots. Many methods have been de-

veloped to detect such C&C channels [12, 13, 14, 19, 20, 31].
For example, Gu et al. explored the spatial-temporal correlation
and similarity among bots to detect botnet traffic [14]. Zhang
and Paxson applied a timing-based algorithm to detect stepping
stones [31]. Livadas et al. used machine learning techniques
to identify Internet relay chat (IRC) based botnets [20]. These
methods attempt to distinguish botnet behaviors from normal
human behaviors. Future botnets, however, may incorporate the
characteristics of human beings, invalidating or weakening the
current detection systems.

In this work, we study a novel intelligent botnet, which is
called the delay-tolerant botnet and is named after the delay-
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tolerant network [10, 11]. Delay-tolerant networks are proposed
to support applications that do not demand the immediate trans-
mission of packets from the source to the destination. Similarly,
many commands in botnets are indeed not required to be simul-
taneously delivered to all bots. Examples of such commands in-
clude searching for confidential information and sending spam
emails. Even for DoS attacks, if the botmaster can accurately
predict when a command can be received by all bots, the timing
of attacks can be set, and the command is still delay tolerant.
A simple way to introduce delays into botnets is that each bot
retrieves a command from the server with a random inter-query
delay or holds a command for random delays before forwarding
it to other bots. In this way, different bots can obtain the com-
mand at different time instants, which is more similar to human
behaviors, and the resulting botnet is more difficult to detect.

In this paper, we study the perspective of attackers who at-
tempt to design future intelligent botnets. By studying this per-
spective, we hope to help defenders better understand potential
botnets and design effective countermeasures. For the design
of delay-tolerant botnets, it is crucial to answer the following
question: Are delay-tolerant botnets scalable? That is, can a
delay-tolerant botnet support a large number of bots? If the an-
swer is yes, the designed delay-tolerant botnet is effective at de-
livering a command and is indeed a potential threat to the future
Internet.

Delivering a command to all bots is analogical to multicasting
a packet to all receivers in multicast networks [26] or transmit-
ting a file to all peers in peer-to-peer networks [17]. For multi-
cast or peer-to-peer networks, an important metric is how long
it takes to deliver a packet or a file to all receivers or peers. Sim-
ilarly, in this work we study the average delay for a command
to be distributed to all bots in the delay-tolerant botnets and call
such a delay the botnet delay [5]. Generally, if the botnet delay
increases linearly or exponentially with the number of bots, the
botnet is not scalable. Otherwise, if the botnet delay increases
logarithmically with the number of bots, the system is scalable.

To study the scalability of delay-tolerant botnets, we apply
mathematical analysis and simulations. Specifically, we first
present three C&C architectures for delay-tolerant botnets: cen-
tralized, distributed, and hybrid. We then derive mathemati-
cally the botnet delays in these different architectures by ap-
plying probabilistic modeling and relationships, and assuming
that inter-query delays or forwarding delays of bots follow a
probability distribution (e.g., exponential). For distributed and
hybrid delay-tolerant botnets, we consider the topology of bot-
nets (e.g., Erdos-Renyi random graph) and compute the botnet
delay based on the average path length [1]. Furthermore, we use
simulations to verify the analytical results.

The goal of this work is to better understand the potential
threats of future botnets. Our research work makes several con-
tributions as follows:

• We find both analytically and empirically that in all three
architectures (i.e., centralized, distributed, and hybrid), the
botnet delay increases approximately logarithmically with

the number of bots. Therefore, the designed delay-tolerant
botnets are scalable.

• We show that in centralized delay-tolerant botnets, if a bot
retrieves a command from the server with an exponen-
tial inter-query delay with mean 1/λ, the botnet delay is
HN/λ, where N is the number of bots and HN is the N -th
harmonic number [8]. Meanwhile, the standard deviation
of time interval for a botmaster to distribute a command to
all bots is bounded and is much smaller than the botnet de-
lay, indicating that the designed botnets are stable. More-
over, when considering an arbitrary distribution of the bot
inter-query delay, we can apply an exponential distribution
as a performance lower bound in delay-tolerant botnets.

• We discover that in distributed delay-tolerant botnets or
in the core overlay networks of hybrid delay-tolerant bot-
nets, if the topology is an Erdos-Renyi random graph with
the average nodal degree of 〈k〉 and a bot delivers a com-
mand to its neighbors with an exponential delay with mean
1/λ, the botnet delay is ln(N)/(2λ ln(〈k〉)), where N is
the number of bots in a distributed delay-tolerant botnet or
servent bots in the core overlay network of a hybrid delay-
tolerant botnet.

The remainder of this paper is structured as follows. Section
2 describes three architectures of delay-tolerant botnets. Section
3 provides a motivating example on studying delay-tolerant bot-
nets. Section 4 derives the botnet delay. Section 5 further uses
simulations to verify analytical results. Finally, Section 6 con-
cludes this paper.

2 Delay-Tolerant Botnet Architectures

In this section, we provide the background on the existing bot-
net C&C architectures and introduce random delays to these
systems to design delay-tolerant botnets (DTBs).

In a botnet, the botmaster has to propagate a command to all
bots. As shown in Figure 1, C&C architectures can be catego-
rized into three types:

• Centralized: The botmaster issues a command to a C&C
server, and all bots are connected to the server to obtain
the command [22], as illustrated in Figure 1(a). There
are two styles of centralized botnets: “push” and “pull”
[14]. Push-style botnets (e.g., IRC-based C&C) deliver
commands from the server to bots in the channel, whereas
pull-style botnets (e.g., HTTP-based C&C) require bots to
connect back to the server for commands. In our designed
DTBs, we choose the pull style, since the push style intro-
duces synchronization among bots, which is easy to detect.
Specifically, we consider that a bot connects to the server
with an inter-query delay. In the existing pull-style botnets,
the inter-query delay is a fixed value and follows a repeat-
ing and regular pattern. Instead, we design the inter-query
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Figure 1: Three architectures of delay-tolerant botnets.

delay to follow a random distribution such as the expo-
nential distribution. In this way, a bot does not follow a
repeating and regular pattern to connect to a server. More-
over, different bots connect to the server at different time
instants, which is more similar to human behaviors. Thus,
the formed botnet is more difficult to detect. In Section 3,
we will provide a motivating example.

• Distributed: The botnet is constructed as an overlay net-
work and behaves similarly to a peer-to-peer (P2P) sys-
tem, as illustrated in Figure 1(b). Once a bot receives a
command, it will forward the command to its neighbors
in the overlay network [27]. The topology of distributed
botnets can be an Erdos-Renyi random graph or a power-
law topology [9]. In our designed DTBs, if a bot receives
a command, it will hold the command for random delays
before forwarding it to its neighbors. Moreover, the bot de-
livers the command to different neighbors at different time
instants. Here, the delays are random variables and follow
probability distributions such as the exponential distribu-
tion.

• Hybrid: The botnet incorporates the advantages of both
centralized and distributed botnets, and is proposed in [29].
As illustrated in Figure 1(c), some bots in the core of the
botnet, called servent bots, are constructed like the dis-
tributed botnet. Other bots, called client bots, connect to
one of servent bots and behave similarly to the centralized
botnet. Therefore, the hybrid botnet can be regarded as the
combination of the centralized botnet and the distributed
botnet, and our designed random delays can similarly be
applied to the hybrid botnet. Moreover, the hybrid botnet
can be regarded as a special case of hierarchical botnets
and consists of two tiers. The first tier includes servent
bots in the core of the topology, whereas the second tier
involves client bots that connect to servent bots in the first
tier.

3 A Motivating Example

We use a simple example to motivate the study of DTBs. In
[14], an autocorrelation analysis method has been proposed to
detect bots in a pull-style centralized C&C botnet. Specifically,
let x(n) denote the traffic (i.e., query) sent by a bot to a server
at n-th discrete-time window (n = 0, 1, · · · ,M − 1). Then, an
estimate of the autocovariance of x(n) is

rxx(n) =
1
M

M−1∑

k=0

x(k)x(k + n). (1)

Thus, an estimate of the autocorrelation, ρxx(n), is

ρxx(n) =
rxx(n)
rxx(0)

, n = 0, 1, · · · , M − 1. (2)

To reduce the computation time, we apply fast Fourier trans-
form (FFT) [16], i.e.,

X(k) = FFT [x(n)], k = 0, 1, · · · ,M − 1 (3)

rxx(n) =
1
M

FFT−1[X∗(k)X(k)]. (4)

As described in [14], if the traffic of a bot is sufficiently au-
tocorrelated (e.g., querying a server periodically), there will be
many peak points (i.e., large autocorrelation coefficients) in the
autocorrelation function of inter-query delays. On the top of
Figure 2, we show such a signal and its autocorrelation. In our
designed DTBs, however, the bot mimics human behaviors and
connects to a server with random delays. For example, on the
bottom of Figure 2, a bot uses exponential delays to query the
server. As a result, except at lag 0, the autocorrelation coeffi-
cients of such a signal are no more than 0.3, which means that
the bots in centralized DTBs can avoid the detection of the au-
tocorrelation analysis method.

4 Mathematical Analysis

In this section, we study the scalability of DTBs through math-
ematical analysis. Specifically, we derive the average time for a
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Figure 2: Autocorrelation of two signals. The signal on the top has periodic inter-query delays, whereas the signal on the bottom
has exponential inter-query delays. Both signals have the same average inter-query delay of 10 minutes.

botmaster to distribute a command to all bots in a DTB, which
is called the botnet delay and denoted by E(T ). We analyze the
botnet delays in the three different architectures of DTBs. The
notations used in this paper are summarized in Table 1.

4.1 Centralized DTBs

For the centralized DTB as illustrated by Figure 1(a), if a bot-
master releases a command to the server at time 0, bot i will
retrieve the command at time Di. Here, D1, D2, · · · , DN are
independent and identically distributed (i.i.d.) with distribution
function FD(·), where N is the number of bots. Hence, the time
interval for all bots to retrieve the command is

T = max
i

Di. (5)

The distribution function of T follows

FT (t) = Pr(T ≤ t) = Pr(max
i

Di ≤ t) (6)

= Pr(D1 ≤ t,D2 ≤ t, · · · , DN ≤ t) (7)

=
N∏

i=1

Pr(Di ≤ t) (8)

= (FD(t))N
. (9)

If a continuous-time system is considered, the botnet delay is

E(T ) =
∫ +∞

0

tfT (t)dt (10)

=
∫ +∞

0

Pr(T > t)dt (11)

=
∫ +∞

0

[
1− (FD(t))N

]
dt. (12)
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Table 1: Notations used in this paper.

Notations Definition or Explanation
T Time interval for a botmaster to distribute a com-

mand to all bots in a DTB
N Number of bots in a DTB
NS Number of servent bots in a hybrid DTB
NC Number of client bots in a hybrid DTB
Di Time interval between the command arriving the

server and bot i retrieving the server or the delay
for bot i to deliver a command after receiving it

D D1, D2, · · · , DN are independent and identically
distributed (i.i.d.) with distribution function FD(·)

Q Inter-query delay of a bot
λ(t) Hazard function: the intensity that a query from a

bot is made at time t, given no query from this bot
during [0, t)

Hn n-th harmonic number, i.e., Hn =
∑n

i=1 1/i
P Path length between bots B1 and BP+1

〈k〉 Average nodal degree in a graph

4.1.1 Exponential Distribution of the Inter-Query Delay

The inter-query delay may follow various probability distribu-
tions. Note that Di is actually the time interval between the
command arriving the server and bot i retrieving the command
from the server, which is different from the inter-query delay
of bot i. However, because of the memoryless property of the
exponential distribution, if bot i uses an exponential inter-query
delay for the command at the server, Di is also exponential with
the same mean. Here, we assume that the distribution of D is
exponential with mean 1/λ, i.e.,

fD(t) =
{

λe−λt, t ≥ 0
0, t < 0,

(13)

and obtain
FD(t) = 1− e−λt, t ≥ 0 (14)

FT (t) =
(
1− eλt

)N
, t ≥ 0. (15)

Hence, by putting Equation (14) into Equation (12), we can de-
rive an explicit expression for the botnet delay

E(T ) =
∫ +∞

0

[
1− (

1− e−λt
)N

]
dt (16)

=
∫ +∞

0

[
1−

N∑

i=0

(
N
i

)
(−1)ie−iλt

]
dt (17)

=
N∑

i=1

(
N
i

)
(−1)i+1

∫ +∞

0

e−iλtdt (18)

=
1
λ

N∑

i=1

(
N
i

)
(−1)i+1

i
, (19)

where in Equation (17) we apply the binomial theorem [2]. We

set Hn =
∑n

i=1

(
n
i

)
(−1)i+1

i , n ≥ 1. Then, H1 = 1, and when

n ≥ 1,

Hn+1 −Hn

=
n+1∑

i=1

(
n + 1

i

)
(−1)i+1

i
−

n∑

i=1

(
n
i

)
(−1)i+1

i
(20)

=
(−1)n+2

n + 1
+

n∑

i=1

[(
n + 1

i

)
−

(
n
i

)]
(−1)i+1

i
(21)

=
(−1)n+2

n + 1
+

n∑

i=1

(
n

i− 1

)
(−1)i+1

i
(22)

=
(−1)n+2

n + 1
+

1
n + 1

n∑

i=1

(
n + 1

i

)
(−1)i+1 (23)

=
1

n + 1

[
n+1∑

i=0

(
n + 1

i

)
(−1)i+1 + 1

]
(24)

=
1

n + 1
, (25)

where we apply the binomial theorem in the last equation. The
above derivation leads to

Hn =
n∑

i=1

1
i
. (26)

That is, Hn is the n-th harmonic number [8]. Hence, we have
the following theorem.

Theorem 1 If a bot retrieves a command from the server with
an exponential inter-query delay with mean 1/λ, the botnet de-
lay is

E(T ) =
HN

λ
=

1
λ

N∑

i=1

1
i
. (27)

We can make two interesting observations from Theorem
1. First, the botnet delay is proportional to the mean of D
(i.e., 1/λ). Second, since HN is O(1 + ln(N)) [8], E(T ) is
O(1 + ln(N)/λ). Therefore, E(T ) increases with the rate of
ln(N) when N increases, which indicates that such a simple
randomized system is scalable.

Using the similar method for deriving E(T ), we can obtain
Var(T ) in the following theorem.

Theorem 2 If a bot retrieves the command from the server with
an exponential inter-query delay with mean 1/λ, the variance
of time interval for a botmaster to distribute a command to all
bots in a centralized DTB is

Var(T ) =
1
λ2

N∑

i=1

1
i2

. (28)
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The proof of Theorem 2 is given in the appendix. Note that
Var(T ) ≤ 1

λ2

∑∞
i=1

1
i2 = π2

6λ2 , where the upper bound is fi-
nite and independent of N , and is related to the Riemann zeta
function in the order of 2 [25]. This shows that even in a large
botnet, the variation of the delays of different trials for distribut-
ing a command is bounded. Moreover, compared with E(T ),√

Var(T ) is much smaller when N is large. Therefore, the de-
signed centralized DTBs are stable.

4.1.2 General Distribution of the Inter-Query Delay

For a general distribution of the inter-query delay (denoted by
Q), since the command can be released to the server at any ar-
bitrary time, D usually does not have the same distribution as
Q. To calculate the distribution of D, let FQ(t) be the cumu-
lative distribution function (CDF) of the bot inter-query delay.
According to the renewal theorem [23], the CDF of D can be
derived from the CDF of Q:

FD(t) =

∫ t

0
(1− FQ(x))dx∫ +∞

0
(1− FQ(x))dx

. (29)

Similar to the argument in [28], we can define the hazard func-
tion λ(t) that denotes the intensity of queries from a bot made
at time t, given that no query from this bot is made during [0, t).
Then,

λ(t) =
d
dtFD(t)

1− FD(t)
. (30)

For an arbitrary hazard function λ(t), if λ(t) ≥ λ for all t ≥ 0
and λ > 0, then the DTB with the inter-query delay having
CDF FQ(·) would perform at least as well as the DTB with the
exponential inter-query delay with mean 1/λ.

To demonstrate this, we show an example when Q follows a
uniform distribution with mean 1/λ, i.e.,

fQ(t) =
{

λ
2 , 0 ≤ t < 2

λ
0, otherwise.

(31)

The CDFs of Q and D are

FQ(t) =
λ

2
t, 0 ≤ t <

2
λ

(32)

FD(t) =
(

1− λ

4
t

)
λt, 0 ≤ t <

2
λ

. (33)

Thus, the hazard function λ(t) can be obtained

λ(t) =
λ

1− λ
2 t

, 0 ≤ t <
2
λ

(34)

and λ(t) is undefined for t ≥ 2/λ. It is noted that λ(0) = λ and
λ(t) > λ for all t ∈ (0, 2/λ). Therefore, compared with the
exponential distribution with mean 1/λ for the bot inter-query

delay, the command can be delivered to all bots faster. Indeed,
from Equation (12),

E(T ) =
∫ 2/λ

0

{
1−

[(
1− λ

4
t

)
λt

]N
}

dt <
2
λ

. (35)

The upper bound of E(T ) is O(1+1/λ) and independent of the
number of bots.

Therefore, we can use Equations (29) and (12) to calculate
the botnet delay from an arbitrary distribution of the bot inter-
query delay. Moreover, when considering an arbitrary distribu-
tion of the bot inter-query delay, we can apply an exponential
distribution as a performance lower bound in DTBs, which sim-
plifies the dynamics significantly.

4.2 Distributed DTBs

As illustrated by Figure 1(b), a command is released to one
bot and is then forwarded to all other bots in the distributed
DTB. Assume that bot B1 is the first bot that obtains the com-
mand and bot BP+1 is the last bot that receives the command.
Specifically, the command is delivered from bot B1 through
bots B2, B3, · · · , BP to reach bot BP+1. Here, P is the path
length between bots B1 and BP+1. We also assume that bot Bi

(i = 1, 2, · · · , P ) holds a command for a random delay of Di

before forwarding it to bot Bi+1. Thus, the time interval for all
bots to receive the command is

T =
P∑

i=1

Di. (36)

Similar to centralized DTBs, we assume that Di’s are i.i.d. with
the exponential distribution with mean 1/λ. Then, given the
value of random variable P , T follows a gamma distribution
with parameters P and λ, i.e.,

fT (t|P ) = λe−λt (λt)P−1

(P − 1)!
, t ≥ 0, (37)

which leads to derive the botnet delay

E(T ) =
1
λ

E(P ). (38)

It has been studied that the average path length (i.e., E(P )) in-
creases approximately logarithmically with N in Erdos-Renyi
random graphs and power-law topologies [1, 21]. That is, for
most botnet topologies in which we are interested [9], E(P ) is
O(1 + ln(N)). Therefore, E(T ) is O(1 + ln(N)/λ), indicating
that distributed DTBs are scalable.

Specifically, we further study DTBs with Erdos-Renyi ran-
dom graphs. According to [1],

E(P ) =
1
2

ln(N)
ln(〈k〉) , (39)

where 〈k〉 is the average nodal degree in a graph. Hence, we
have the following theorem.
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Theorem 3 If a bot delivers a command to its neighbors with
an exponential delay with mean 1/λ in a distributed DTB with
an Erdos-Renyi random graph with the average nodal degree of
〈k〉, the botnet delay is

E(T ) =
ln(N)

2λ ln(〈k〉) . (40)

Note that the above analysis assumes the spatial indepen-
dence of message delivery among different paths in a network.
It has been shown that if arrival rate λ is very small, the spatial
dependence can affect information dissemination significantly
[7]. However, if arrival rate λ is not too small, which is the
case for DTBs, we can ignore the spatial dependence to reduce
computational complexity, without losing much accuracy.

4.3 Hybrid DTBs

In the hybrid DTB as illustrated by Figure 1(c), a command is
first released to one of servent bots and is then forwarded to
other servent bots in the overlay network. A client bot connects
back to a servent bot for the command. Assume that there are
NS servent bots and NC client bots, where NS +NC = N . The
command is released to servent bot B1 and is delivered along
the path B2, B3, · · · , BP to reach BP+1 that is the last servent
bot receiving the command. Servent bot Bi (i = 1, 2, · · · , P )
holds a command for a random delay of DS

i before forwarding
it to servent bot Bi+1. We also assume that when servent bot
BP+1 receives the command, there are still L (0 ≤ L ≤ NC)
client bots that have not received the command from servent
bots. The set of these client bots is denoted by J . Let DC

j (j ∈
J) denote the time interval between the command arriving the
servent bot BP+1 and client bot j retrieving the command from
its servent bot. Then, the time interval for all bots to receive the
command is

T =
P∑

i=1

DS
i + max

j∈J
DC

j , (41)

which consists of the components from both centralized and dis-
tributed DTBs. If DS

i ’s and DC
j ’s are i.i.d. with the exponential

distribution with mean 1/λ, the botnet delay is

E(T ) =
1
λ

(E(P ) + HL) . (42)

Since E(P ) is O(1 + ln(NS)) and HL is O(1 + ln(L)), E(T )
is O(1 + (ln(NS) + ln(L))/λ). If NC >> NS , i.e., the hybrid
DTBs has a relatively small core overlay network, all servent
bots will receive the command before the majority of client bots,
i.e., L ≈ NC . In this case, E(T ) is about O(1+ln(NS ·NC)/λ).
Note that ln(NS · NC)/λ < 2 ln(N)/λ. Therefore, hybrid
DTBs are still scalable in terms of the botnet delay.

Moreover, if the core overlay network is an Erdos-Renyi ran-
dom graph, we have the following theorem.

Theorem 4 If a servent bot delivers a command to its neigh-
bors or a client bot retrieves a command from its servent bot

with an exponential delay with mean 1/λ in a hybrid DTB with
an Erdos-Renyi random graph as the core overlay network, the
botnet delay is

E(T ) =
1
λ

(
ln(NS)
2 ln(〈k〉) +

L∑

i=1

1
i

)
, (43)

where 〈k〉 is the average nodal degree of the core overlay net-
work.

5 Simulations and Verification

We now examine the analytical results on DTBs through simu-
lations. In our simulations, a command is released to a bot and
is then delivered to all other bots in the three different architec-
tures of DTBs. For each scenario, we simulate 1,000 runs with
different seeds. Moreover, we apply the techniques in [24] to
generate different probability distributions of inter-query delays
or forwarding delays, and follow the description in [1] to con-
struct Erdos-Renyi random graphs. Specifically, we generate
the exponential, geometric, and uniform distributions through
a random number generator. For example, we first obtain a
random number U in (0, 1) and then use X = − ln(U)/λ to
generate an exponential random variable X with mean 1/λ, ac-
cording to the inverse transform algorithm in [24]. To obtain an
Erdos-Renyi random graph with N nodes and an average nodal
degree of 〈k〉, we set p = 〈k〉/(N − 1), and then create N
nodes and connect each pair of nodes (among N(N − 1) per-
mutations) with probability p, as indicated in [1]. The simulator
is written by the C programming language and runs under the
Ubuntu 8.10 Linux system.

5.1 Centralized DTBs

To evaluate the scalability of centralized DTBs, we vary the
number of bots (i.e., N ) from 1,000 to 500,000. In the simula-
tion, the command is released to a server at time 0, and each bot
connects to the server with a random inter-query delay. Then,
the time instant when the last bot retrieves the command from
the server is recorded. Figure 3 compares the simulation results
with the analytical results in Theorems 1 and 2 for E(T ) and√

Var(T ) in centralized DTBs. Here, we assume that the inter-
query delays follow the exponential distribution with the mean
of 20 mins or 10 mins (i.e., λ = 0.05 /min or λ = 0.1 /min).
Simulation results are averaged over 1,000 runs. It can be seen
that the simulation results of E(T ) are identical to the analyti-
cal results, whereas the analysis slightly underestimates the real√

Var(T ). Therefore, this verifies that Theorems 1 and 2 hold,
and demonstrates that centralized DTBs are scalable. For ex-
ample, even in a centralized DTB with 500,000 bots, the botnet
delay is less than 5 hours in the case of λ = 0.05 /min.

Next, we study the effect of inter-query delay distributions
on centralized DTBs. Specifically, we consider three proba-
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(a) Botnet delays of centralized DTBs.
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(b) Standard deviation of time interval for distributing a command in
centralized DTBs.

Figure 3: Average and standard deviation of delays for distribut-
ing a command in centralized DTBs.

bility distributions of inter-query delays: an exponential dis-
tribution with mean 1/λ (i.e., Equation (13)), a uniform dis-
tribution over [0, 2/λ) (i.e., Equation (31)), and a geometric
distribution with mean 1/λ. For the geometric distribution,
Pr(Q = i) = Pr(D = i) = λ(1 − λ)i−1, i = 1, 2, · · · , assum-
ing λ < 1. Following the steps in Section 4.1, we can obtain
the botnet delay with the geometric distribution of inter-query
delays, i.e., E(T ) =

∑+∞
i=0 {1− [1− (1− λ)i]N}. Figure 4

shows the botnet delays in centralized DTBs when the inter-
query delays follow the exponential, uniform, or geometric dis-
tribution. Since the simulation results are identical to the an-
alytical results, Figure 4 only gives the simulation results over
1,000 runs. It can be seen that when the delay distribution is
uniform, the botnet delay is always less than 2/λ. Moreover,
compared with the exponential distribution, the geometric dis-
tribution spreads the command slightly faster. These results ver-
ify our analysis in Section 4.1.
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Figure 4: Effect of inter-query delay distributions on centralized
DTBs.
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Figure 5: Delays for distributing a command to all bots in dis-
tributed DTBs with an Erdos-Renyi random graph (〈k〉 = 20).

5.2 Distributed DTBs

We then study the scalability of distributed DTBs through sim-
ulations. Specifically, we simulate the command delivery over
Erdos-Renyi random graphs with the average nodal degree of
20. The command is initially released to a bot and then for-
warded to other bots in a flooding way. A bot receives the com-
mand from one of its neighbors with a random delay that fol-
lows the geometric distribution with mean 1/λ, after this neigh-
bor obtains the command. Figure 5 shows the simulation re-
sults when N varies from 1,000 to 38,000 and λ equals 0.05
or 0.1. The curve is the average over 1,000 runs, whereas the
error bar represents the standard deviation. Figure 5 also shows
the analytical results. Since the geometric distribution can be
regarded as the discrete-time counterpart of the exponential dis-
tribution, the analytical result of Theorem 3 is applied. It can
be seen that when λ = 0.1, the analytical results almost over-
lap with the simulation results. When λ = 0.05, the analytical
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Figure 6: Botnet delays of hybrid DTBs (〈k〉 = 15 and λ =
0.1). Servent bots construct an Erdos-Renyi random graph. The
x-axis uses a log scale.

results slightly over-estimate the botnet delays because the spa-
tial dependence over different paths is ignored. The analytical
results, however, characterize the tendency of the botnet delay
accurately when N varies from small to large. That is, the sim-
ulation results verify that distributed DTBs are scalable.

5.3 Hybrid DTBs

Finally, we consider the scalability of hybrid DTBs through
simulations. Specifically, we simulate NS servent bots that con-
struct an Erdos-Renyi random graph with the average nodal de-
gree of 15. A servent bot holds a command for a random delay
that follows the geometric distribution with a mean of 10 mins.
A client bot has an exponential inter-query delay with a mean
of 10 mins. We consider two special cases for assigning client
bots to servent bots: the uniform assignment where each servent
bot has NC/NS client bots and the extreme assignment where
all client bots are assigned to servent bot BP+1. Figure 6 shows
the simulation results when N varies from 1,000 to 40,000 and
NS/N equals 0.2 or 0.05. Note that the x-axis uses a log scale.
As expected, the botnet delay is larger for the case of the ex-
treme assignment. However, both NS/N and the assignment
scheme do not affect the botnet delay significantly. Figure 6
also shows the analytical results by applying Theorem 4 and
assuming L = NC . It can be seen that our mathematical anal-
ysis predicts the tendency of the botnet delay accurately when
N varies from small to large. Therefore, the simulation results
verify that hybrid DTBs are scalable.

6 Conclusions

In this work, we attempt to better understand the potential
threats of future botnets. Specifically, we have studied DTBs

that introduce random delays to command propagation, mak-
ing botnet behaviors more similar to human behaviors and bots
more difficult to detect. We have designed three types of DTBs:
centralized, distributed, and hybrid. Through mathematical
analysis, we have found that in all cases, the botnet delay in-
creases approximately logarithmically with the number of bots.
For example, when an exponential inter-query delay or forward-
ing delay is considered, we have shown that in a centralized
botnet, the botnet delay is HN/λ, and the standard deviation of
time interval to distribute a command to all bots is bounded and
is much smaller than the botnet delay. Moreover, we have dis-
covered that in distributed delay-tolerant botnets or in the core
overlay networks of hybrid delay-tolerant botnets, if an Erdos-
Renyi random graph with the average nodal degree of 〈k〉 is
studied, the botnet delay is ln(N)/(2λ ln(〈k〉)). Finally, we
have also used simulations to verify that the designed DTBs are
indeed scalable.

From our analysis and simulations, we have demonstrated
that the probability distribution of the inter-query delay or the
forwarding delay has a significant impact on the performance of
DTBs. In general, if the probability distribution has a smaller
variance, the botnet can deliver the command to all bots faster,
but the botnet contains less randomness and is easier to detect.
This indicates the tradeoff between the stealth of botnets and the
promptness of command propagation. Moreover, we have ap-
plied the renewal theorem to obtain a performance lower bound
in DTBs and thus simplified the dynamics.

As part of our on-going work, we plan to develop effective
detection and defense mechanisms against DTBs. Specifically,
we will study how honeypots can potentially penetrate into
DTBs and collect the information of bots. In addition, although
DTBs incorporate the characteristics of human beings and make
botnet traffic similar to normal traffic, we will look into differ-
ent divisions of traffic (such as principal component analysis
in [18]) and attempt to distinguish botnet traffic from normal
traffic. Moreover, since many botnets are formed through worm
propagation [4, 6], we are investigating the topologies of botnets
that are built by worm infection [30]. Finally, the methodology
used in this paper can be extended to analyze the message delay
in P2P systems and ad hoc wireless networks and the probing
delay in cognitive radio networks [3].
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APPENDIX (Proof of Theorem 2)

Since the CDF of random variable T follows Equation (15),
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where in Equation (46) we apply the binomial theorem. We set
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(26). Thus, the above derivation leads to
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Therefore, using Equations (48), (57), and (27),
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