Introduction

A botnet is a network of compromised computers that are organized by a malicious attacker called the botmaster. Botnets have been exploited to set off denial-of-service (DoS) attacks, send spam emails, and search for confidential information. For example, the Storm botnet affected tens of millions of hosts and was used for spam emails and distributed DoS attacks in 2007 [15]. Therefore, botnets have become one of top threats to the current Internet.

A botmaster uses command and control (C&C) channels to deliver commands to all bots. Many methods have been developed to detect such C&C channels [12, 13, 14, 19, 20, 31]. For example, Gu et al. explored the spatial-temporal correlation and similarity among bots to detect botnet traffic [14]. Zhang and Paxson applied a timing-based algorithm to detect stepping stones [31]. Livadas et al. used machine learning techniques to identify Internet relay chat (IRC) based botnets [20]. These methods attempt to distinguish botnet behaviors from normal human behaviors. Future botnets, however, may incorporate the characteristics of human beings, invalidating or weakening the current detection systems.

In this work, we study a novel intelligent botnet, which is called the delay-tolerant botnet and is named after the delay-
tolerant network [10, 11]. Delay-tolerant networks are proposed to support applications that do not demand the immediate transmission of packets from the source to the destination. Similarly, many commands in botnets are indeed not required to be simultaneously delivered to all bots. Examples of such commands include searching for confidential information and sending spam emails. Even for DoS attacks, if the botmaster can accurately predict when a command can be received by all bots, the timing of attacks can be set, and the command is still delay tolerant. A simple way to introduce delays into botnets is that each bot retrieves a command from the server with a random inter-query delay or holds a command for random delays before forwarding it to other bots. In this way, different bots can obtain the command at different time instants, which is more similar to human behaviors, and the resulting botnet is more difficult to detect.

In this paper, we study the perspective of attackers who attempt to design future intelligent botnets. By studying this perspective, we hope to help defenders better understand potential botnets and design effective countermeasures. For the design of delay-tolerant botnets, it is crucial to answer the following question: Are delay-tolerant botnets scalable? That is, can a delay-tolerant botnet be scalable in the number of bots? If the answer is yes, the designed delay-tolerant botnet is effective at delivering a command and is indeed a potential threat to the future Internet.

Delivering a command to all bots is analogous to multicasting a packet to all receivers in multicast networks [26] or transmitting a file to all peers in peer-to-peer networks [17]. For multicast or peer-to-peer networks, an important metric is how long it takes to deliver a packet or a file to all receivers or peers. Similarly, in this work we study the average delay for a command to be distributed to all bots in the delay-tolerant botnets and call such a delay the botnet delay [5]. Generally, if the botnet delay increases linearly or exponentially with the number of bots, the botnet is not scalable. Otherwise, if the botnet delay increases logarithmically with the number of bots, the system is scalable.

In this section, we describe three architectures of delay-tolerant botnets: centralized, distributed, and hybrid. We then derive mathematically the botnet delays in these different architectures by applying probabilistic modeling and relationships, and assuming that inter-query delays or forwarding delays of bots follow a probability distribution (e.g., exponential). For distributed and hybrid delay-tolerant botnets, we consider the topology of botnets (e.g., Erdos-Renyi random graph) and compute the botnet delay based on the average path length [11]. Furthermore, we use simulations to verify the analytical results.

The goal of this work is to better understand the potential threats of future botnets. Our research work makes several contributions as follows:

- We find both analytically and empirically that in all three architectures (i.e., centralized, distributed, and hybrid), the botnet delay increases approximately logarithmically with the number of bots. Therefore, the designed delay-tolerant botnets are scalable.
- We show that in centralized delay-tolerant botnets, if a bot retrieves a command from the server with an exponential inter-query delay with mean \(1/\lambda\), the botnet delay is \(H_N/\lambda\), where \(N\) is the number of bots and \(H_N\) is the \(N\)-th harmonic number [8]. Meanwhile, the standard deviation of time interval for a botmaster to distribute a command to all bots is bounded and is much smaller than the botnet delay, indicating that the designed botnets are stable. Moreover, when considering an arbitrary distribution of the bot inter-query delay, we can apply an exponential distribution as a performance lower bound in delay-tolerant botnets.
- We discover that in distributed delay-tolerant botnets or in the core overlay networks of hybrid delay-tolerant botnets, if the topology is an Erdos-Renyi random graph with the average nodal degree of \(k\) and a bot delivers a command to its neighbors with an exponential delay with mean \(1/\lambda\), the botnet delay is \(\ln(N)/(2\lambda \ln((k)))\), where \(N\) is the number of bots in a distributed delay-tolerant botnet or servant bots in the core overlay network of a hybrid delay-tolerant botnet.

The remainder of this paper is structured as follows. Section 2 describes three architectures of delay-tolerant botnets. Section 3 provides a motivating example on studying delay-tolerant botnets. Section 4 derives the botnet delay. Section 5 further uses simulations to verify analytical results. Finally, Section 6 concludes this paper.

2 Delay-Tolerant Botnet Architectures

In this section, we provide the background on the existing botnet C&C architectures and introduce random delays to these systems to design delay-tolerant botnets (DTBs).

In a botnet, the botmaster has to propagate a command to all bots. As shown in Figure 1, C&C architectures can be categorized into three types:

- **Centralized**: The botmaster issues a command to a C&C server, and all bots are connected to the server to obtain the command [22], as illustrated in Figure 1(a). There are two styles of centralized botnets: “push” and “pull” [14]. Push-style botnets (e.g. IRC-based C&C) deliver commands from the server to bots in the channel, whereas pull-style botnets (e.g. HTTP-based C&C) require bots to connect back to the server for commands. In our designed DTBs, we choose the pull style, since the push style introduces synchronization among bots, which is easy to detect. Specifically, we consider that a bot connects to the server with an inter-query delay. In the existing pull-style botnets, the inter-query delay is a fixed value and follows a repeating and regular pattern. Instead, we design the inter-query...
delay to follow a random distribution such as the exponential distribution. In this way, a bot does not follow a repeating and regular pattern to connect to a server. Moreover, different bots connect to the server at different time instants, which is more similar to human behaviors. Thus, the formed botnet is more difficult to detect. In Section 3, we will provide a motivating example.

- **Distributed:** The botnet is constructed as an overlay network and behaves similarly to a peer-to-peer (P2P) system, as illustrated in Figure 1(b). Once a bot receives a command, it will forward the command to its neighbors in the overlay network [27]. The topology of distributed botnets can be an Erdos-Renyi random graph or a power-law topology [9]. In our designed DTBs, if a bot receives a command, it will hold the command for random delays before forwarding it to its neighbors. Moreover, the bot delivers the command to different neighbors at different time instants. Here, the delays are random variables and follow probability distributions such as the exponential distribution.

- **Hybrid:** The botnet incorporates the advantages of both centralized and distributed botnets, and is proposed in [29]. As illustrated in Figure 1(c), some bots in the core of the botnet, called servent bots, are constructed like the distributed botnet. Other bots, called client bots, connect to one of servent bots and behave similarly to the centralized botnet. Therefore, the hybrid botnet can be regarded as the combination of the centralized botnet and the distributed botnet, and our designed random delays can similarly be applied to the hybrid botnet. Moreover, the hybrid botnet can be regarded as a special case of hierarchical botnets and consists of two tiers. The first tier includes servent bots in the core of the topology, whereas the second tier involves client bots that connect to servent bots in the first tier.

![Figure 1: Three architectures of delay-tolerant botnets.](image)

3 A Motivating Example

We use a simple example to motivate the study of DTBs. In [14], an autocorrelation analysis method has been proposed to detect bots in a pull-style centralized C&C botnet. Specifically, let \(x(n) \) denote the traffic (i.e., query) sent by a bot to a server at \(n \)-th discrete-time window \((n = 0, 1, \cdots, M - 1) \). Then, an estimate of the autocovariance of \(x(n) \) is

\[
\rho_{xx}(n) = \frac{1}{M} \sum_{k=0}^{M-1} x(k)x(k + n).
\]

(1)

Thus, an estimate of the autocorrelation, \(\rho_{xx}(n) \), is

\[
\rho_{xx}(n) = \frac{r_{xx}(n)}{r_{xx}(0)}, \quad n = 0, 1, \cdots, M - 1.
\]

(2)

To reduce the computation time, we apply fast Fourier transform (FFT) [16], i.e.,

\[
X(k) = \text{FFT}[x(n)], \quad k = 0, 1, \cdots, M - 1
\]

(3)

\[
r_{xx}(n) = \frac{1}{M} \text{FFT}^{-1}[X^*(k)X(k)].
\]

(4)

As described in [14], if the traffic of a bot is sufficiently autocorrelated (e.g., querying a server periodically), there will be many peak points (i.e., large autocorrelation coefficients) in the autocorrelation function of inter-query delays. On the top of Figure 2, we show such a signal and its autocorrelation. In our designed DTBs, however, the bot mimics human behaviors and connects to a server with random delays. For example, on the bottom of Figure 2, a bot uses exponential delays to query the server. As a result, except at lag 0, the autocorrelation coefficients of such a signal are no more than 0.3, which means that the bots in centralized DTBs can avoid the detection of the autocorrelation analysis method.

4 Mathematical Analysis

In this section, we study the scalability of DTBs through mathematical analysis. Specifically, we derive the average time for a
botmaster to distribute a command to all bots in a DTB, which is called the \textit{botnet delay} and denoted by $E(T)$. We analyze the botnet delays in the three different architectures of DTBs. The notations used in this paper are summarized in Table 1.

4.1 Centralized DTBs

For the centralized DTB as illustrated by Figure 1(a), if a botmaster releases a command to the server at time 0, bot i will retrieve the command at time D_i. Here, D_1, D_2, \cdots, D_N are independent and identically distributed (i.i.d.) with distribution function $F_D(\cdot)$, where N is the number of bots. Hence, the time interval for all bots to retrieve the command is

$$T = \max_i D_i.$$ \hfill (5)

The distribution function of T follows

$$F_T(t) = \Pr(T \leq t) = \Pr(\max_i D_i \leq t)$$ \hfill (6)

$$= \Pr(D_1 \leq t, D_2 \leq t, \cdots, D_N \leq t)$$ \hfill (7)

$$= \prod_{i=1}^N \Pr(D_i \leq t)$$ \hfill (8)

$$= (F_D(t))^N.$$ \hfill (9)

If a continuous-time system is considered, the botnet delay is

$$E(T) = \int_0^{+\infty} t f_T(t) dt$$ \hfill (10)

$$= \int_0^{+\infty} \Pr(T > t) dt$$ \hfill (11)

$$= \int_0^{+\infty} \left[1 - (F_D(t))^N\right] dt.$$ \hfill (12)
4.1.1 Exponential Distribution of the Inter-Query Delay

The inter-query delay may follow various probability distributions. Note that D_i is actually the time interval between the command arriving the server and bot i retrieving the command from the server, which is different from the inter-query delay of bot i. However, because of the memoryless property of the exponential distribution, if bot i uses an exponential inter-query delay for the command at the server, D_i is also exponential with the same mean. Here, we assume that the distribution of D is exponential with mean $1/\lambda$, i.e.,

$$f_D(t) = \begin{cases} \lambda e^{-\lambda t}, & t \geq 0 \\ 0, & t < 0, \end{cases}$$

and obtain

$$F_D(t) = 1 - e^{-\lambda t}, \quad t \geq 0$$

and

$$F_T(t) = (1 - e^{-\lambda t})^N, \quad t \geq 0.$$

Hence, by putting Equation (14) into Equation (12), we can derive an explicit expression for the botnet delay

$$E(T) = \int_0^{+\infty} \left[1 - (1 - e^{-\lambda t})^N \right] dt$$

$$= \int_0^{+\infty} \left[1 - \sum_{i=0}^{N} \binom{N}{i} (-1)^i e^{-\lambda i t} \right] dt$$

$$= \sum_{i=1}^{N} \binom{N}{i} (-1)^i \int_0^{+\infty} e^{-\lambda i t} dt$$

$$= \frac{1}{\lambda} \sum_{i=1}^{N} \binom{N}{i} (-1)^i \frac{1}{i},$$

where in Equation (17) we apply the binomial theorem [2]. We set $H_n = \sum_{i=1}^{n} \binom{n}{i} (-1)^{i+1} i, n \geq 1$. Then, $H_1 = 1$, and when $n \geq 1$,

$$H_{n+1} - H_n = \sum_{i=1}^{n+1} \binom{n+1}{i} (-1)^{i+1} i - \sum_{i=1}^{n} \binom{n}{i} (-1)^{i+1} i$$

$$= \binom{n+1}{n+1} + \sum_{i=1}^{n} \binom{n+1}{i} (-1)^{i+1} i$$

$$= \frac{1}{n+1} \sum_{i=0}^{n} \binom{n+1}{i} (-1)^{i+1} i + 1$$

$$= \frac{1}{n+1} \left[\sum_{i=0}^{n+1} \binom{n+1}{i} (-1)^{i+1} + 1 \right]$$

where we apply the binomial theorem in the last equation. The above derivation leads to

$$H_n = \sum_{i=1}^{n} \frac{1}{i}.$$

That is, H_n is the n-th harmonic number [8]. Hence, we have the following theorem.

Theorem 1 If a bot retrieves a command from the server with an exponential inter-query delay with mean $1/\lambda$, the botnet delay is

$$E(T) = \frac{H_N}{\lambda} = \frac{1}{\lambda} \sum_{i=1}^{N} \frac{1}{i}.$$

We can make two interesting observations from Theorem 1. First, the botnet delay is proportional to the mean of D (i.e., $1/\lambda$). Second, since H_N is $O(1 + \ln(N))$ [8], $E(T)$ is $O(1 + \ln(N)/\lambda)$. Therefore, $E(T)$ increases with the rate of $\ln(N)$ when N increases, which indicates that such a simple randomized system is scalable.

Using the similar method for deriving $E(T)$, we can obtain $\text{Var}(T)$ in the following theorem.

Theorem 2 If a bot retrieves the command from the server with an exponential inter-query delay with mean $1/\lambda$, the variance of time interval for a botmaster to distribute a command to all bots in a centralized DTB is

$$\text{Var}(T) = \frac{1}{\lambda^2} \sum_{i=1}^{N} \frac{1}{i^2}.$$
The proof of Theorem 2 is given in the appendix. Note that \(\text{Var}(T) \leq \frac{1}{\lambda^2} \sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6\lambda^2} \), where the upper bound is finite and independent of \(N \), and is related to the Riemann zeta function in the order of 2 [25]. This shows that even in a large botnet, the variation of the delays of different trials for distributing a command is bounded. Moreover, compared with \(E(T) \), \(\sqrt{\text{Var}(T)} \) is much smaller when \(N \) is large. Therefore, the designed centralized DTBs are stable.

4.1.2 General Distribution of the Inter-Query Delay

For a general distribution of the inter-query delay (denoted by \(Q \)), since the command can be released to the server at any arbitrary time, \(D \) usually does not have the same distribution as \(Q \). To calculate the distribution of \(D \), let \(F_Q(t) \) be the cumulative distribution function (CDF) of the bot inter-query delay. According to the renewal theorem [23], the CDF of \(D \) can be derived from the CDF of \(Q \):

\[
F_D(t) = \frac{\int_0^t (1 - F_Q(x)) \, dx}{\int_0^{\infty} (1 - F_Q(x)) \, dx}.
\]

(29)

Similar to the argument in [28], we can define the hazard function \(\lambda(t) \) that denotes the intensity of queries from a bot made at time \(t \), given that no query from this bot is made during \([0, t)\). Then,

\[
\lambda(t) = \frac{\frac{d}{dt} F_D(t)}{1 - F_D(t)}.
\]

(30)

For an arbitrary hazard function \(\lambda(t) \), if \(\lambda(t) \geq \lambda \) for all \(t \geq 0 \) and \(\lambda > 0 \), then the DTB with the inter-query delay having CDF \(F_Q(.) \) would perform at least as well as the DTB with the exponential inter-query delay with mean \(1/\lambda \).

To demonstrate this, we show an example when \(Q \) follows a uniform distribution with mean \(1/\lambda \), i.e.,

\[
f_Q(t) = \begin{cases} \frac{\lambda}{2}, & 0 \leq t < \frac{\lambda}{2} \\ 0, & \text{otherwise}. \end{cases}
\]

(31)

The CDFs of \(Q \) and \(D \) are

\[
F_Q(t) = \frac{\lambda}{2}, \quad 0 \leq t < \frac{\lambda}{2}
\]

(32)

\[
F_D(t) = \left(1 - \frac{\lambda}{4} t\right) \lambda t, \quad 0 \leq t < \frac{2}{\lambda}.
\]

(33)

Thus, the hazard function \(\lambda(t) \) can be obtained

\[
\lambda(t) = \frac{\lambda}{1 - \frac{\lambda}{2} t}, \quad 0 \leq t < \frac{2}{\lambda}
\]

(34)

and \(\lambda(t) \) is undefined for \(t \geq 2/\lambda \). It is noted that \(\lambda(0) = \lambda \) and \(\lambda(t) > \lambda \) for all \(t \in (0, 2/\lambda) \). Therefore, compared with the exponential distribution with mean \(1/\lambda \) for the bot inter-query delay, the command can be delivered to all bots faster. Indeed, from Equation (12),

\[
E(T) = \int_0^{2/\lambda} \left\{1 - \left[\left(1 - \frac{\lambda}{4} t\right) \lambda t\right]^N\right\} dt < \frac{2}{\lambda}.
\]

(35)

The upper bound of \(E(T) \) is \(O(1 + 1/\lambda) \) and independent of the number of bots.

Therefore, we can use Equations (29) and (12) to calculate the botnet delay from an arbitrary distribution of the bot inter-query delay. Moreover, when considering an arbitrary distribution of the bot inter-query delay, we can apply an exponential distribution as a performance lower bound in DTBs, which simplifies the dynamics significantly.

4.2 Distributed DTBs

As illustrated by Figure 1(b), a command is released to one bot and is then forwarded to all other bots in the distributed DTB. Assume that bot \(B_1 \) is the first bot that obtains the command and bot \(B_{P+1} \) is the last bot that receives the command. Specifically, the command is delivered from bot \(B_1 \) through bots \(B_2, B_3, \ldots, B_P \) to reach bot \(B_{P+1} \). Here, \(P \) is the path length between bots \(B_1 \) and \(B_{P+1} \). We also assume that bot \(B_i \) for \(i = 1, 2, \ldots, P \) holds a command for a random delay of \(D_i \) before forwarding it to bot \(B_{i+1} \). Thus, the time interval for all bots to receive the command is

\[
T = \sum_{i=1}^{P} D_i.
\]

(36)

Similar to centralized DTBs, we assume that \(D_i \)'s are i.i.d. with the exponential distribution with mean \(1/\lambda \). Then, given the value of random variable \(P \), \(T \) follows a gamma distribution with parameters \(P \) and \(\lambda \), i.e.,

\[
f_T(t|P) = \lambda e^{-\lambda t} \left(\frac{\lambda t}{P-1}\right)^{P-1}, \quad t \geq 0,
\]

(37)

which leads to derive the botnet delay

\[
E(T) = \frac{1}{\lambda} E(P).
\]

(38)

It has been studied that the average path length (i.e., \(E(P) \)) increases approximately logarithmically with \(N \) in Erdos-Renyi random graphs and power-law topologies [1, 21]. That is, for most botnet topologies in which we are interested [9], \(E(P) \) is \(O(1 + \ln(N)) \). Therefore, \(E(T) \) is \(O(1 + \ln(N)/\lambda) \), indicating that distributed DTBs are scalable.

Specifically, we further study DTBs with Erdos-Renyi random graphs. According to [1],

\[
E(P) = \frac{1}{\lambda} \ln(N)
\]

(39)

where \(\langle k \rangle \) is the average nodal degree in a graph. Hence, we have the following theorem.
Theorem 3 If a bot delivers a command to its neighbors with an exponential delay with mean $1/\lambda$ in a distributed DTB with an Erdos-Renyi random graph with the average nodal degree $\langle k \rangle$, the botnet delay is

$$E(T) = \frac{\ln(N)}{2\lambda \ln(\langle k \rangle)}.$$ \hspace{1cm} (40)

Note that the above analysis assumes the spatial independence of message delivery among different paths in a network. It has been shown that if arrival rate λ is very small, the spatial dependence can affect information dissemination significantly [7]. However, if arrival rate λ is not too small, which is the case for DTBs, we can ignore the spatial dependence to reduce computational complexity, without losing much accuracy.

4.3 Hybrid DTBs

In the hybrid DTB as illustrated by Figure 1(c), a command is first released to one of servent bots and is then forwarded to other servent bots in the overlay network. A client bot connects back to a servent bot for the command. Assume that there are N_S servent bots and N_C client bots, where $N_S + N_C = N$. The command is released to servent bot B_1 and is delivered along the path B_2, B_3, \cdots, B_P to reach B_{P+1} that is the last servent bot receiving the command. Servent bot B_i ($i = 1, 2, \cdots, P$) holds a command for a random delay of D^S_i before forwarding it to servent bot B_{i+1}. We also assume that when servent bot B_{P+1} receives the command, there are still L ($0 \leq L \leq N_C$) client bots that have not received the command from servent bots. The set of these client bots is denoted by J. Let D^C_j ($j \in J$) denote the time interval between the command arriving the servent bot B_{P+1} and client bot j retrieving the command from its servent bot. Then, the time interval for all bots to receive the command is

$$T = \sum_{i=1}^{P} D^S_i + \max_{j \in J} D^C_j,$$ \hspace{1cm} (41)

which consists of the components from both centralized and distributed DTBs. If D^S_i's and D^C_j's are i.i.d. with the exponential distribution with mean $1/\lambda$, the botnet delay is

$$E(T) = \frac{1}{\lambda} (E(P) + H_L).$$ \hspace{1cm} (42)

Since $E(P)$ is $O(1 + \ln(N_S))$ and H_L is $O(1 + \ln(L))$, $E(T)$ is $O(1 + \ln(N_S) + \ln(L))/\lambda$. If $N_C \gg N_S$, i.e., the hybrid DTBs has a relatively small core overlay network, all servent bots will receive the command before the majority of client bots, i.e., $L \approx N_C$. In this case, $E(T)$ is about $O(1 + \ln(N_S) \cdot N_C)/\lambda$. Note that $\ln(N_S \cdot N_C)/\lambda < 2 \ln(N)/\lambda$. Therefore, hybrid DTBs are still scalable in terms of the botnet delay.

Moreover, if the core overlay network is an Erdos-Renyi random graph, we have the following theorem.

Theorem 4 If a servent bot delivers a command to its neighbors or a client bot retrieves a command from its servent bot with an exponential delay with mean $1/\lambda$ in a hybrid DTB with an Erdos-Renyi random graph as the core overlay network, the botnet delay is

$$E(T) = \frac{1}{\lambda} \left(\ln(N_S) + \sum_{i=1}^{L} \frac{1}{i} \right),$$ \hspace{1cm} (43)

where $\langle k \rangle$ is the average nodal degree of the core overlay network.

5 Simulations and Verification

We now examine the analytical results on DTBs through simulations. In our simulations, a command is released to a bot and is then delivered to all other bots in the three different architectures of DTBs. For each scenario, we simulate 1,000 runs with different seeds. Moreover, we apply the techniques in [24] to generate different probability distributions of inter-query delays or forwarding delays, and follow the description in [1] to construct Erdos-Renyi random graphs. Specifically, we generate the exponential, geometric, and uniform distributions through a random number generator. For example, we first obtain a random number U in $(0, 1)$ and then use $X = -\ln(U)/\lambda$ to generate an exponential random variable X with mean $1/\lambda$, according to the inverse transform algorithm in [24]. To obtain an Erdos-Renyi random graph with N nodes and an average nodal degree of $\langle k \rangle$, we set $p = \langle k \rangle/(N - 1)$, and then create N nodes and connect each pair of nodes (among $N(N - 1)$ permutations) with probability p, as indicated in [1]. The simulator is written by the C programming language and runs under the Ubuntu 8.10 Linux system.

5.1 Centralized DTBs

To evaluate the scalability of centralized DTBs, we vary the number of bots (i.e., N) from 1,000 to 500,000. In the simulation, the command is released to a server at time 0, and each bot connects to the server with a random inter-query delay. Then, the time instant when the last bot retrieves the command from the server is recorded. Figure 3 compares the simulation results with the analytical results in Theorems 1 and 2 for $E(T)$ and $\sqrt{\text{Var}(T)}$ in centralized DTBs. Here, we assume that the inter-query delays follow the exponential distribution with the mean of 20 mins or 10 mins (i.e., $\lambda = 0.05$/min or $\lambda = 0.1$/min). Simulation results are averaged over 1,000 runs. It can be seen that the simulation results of $E(T)$ are identical to the analytical results, whereas the analysis slightly underestimates the real $\sqrt{\text{Var}(T)}$. Therefore, this verifies that Theorems 1 and 2 hold, and demonstrates that centralized DTBs are scalable. For example, even in a centralized DTB with 500,000 bots, the botnet delay is less than 5 hours in the case of $\lambda = 0.05$/min.

Next, we study the effect of inter-query delay distributions on centralized DTBs. Specifically, we consider three proba-
probability distributions of inter-query delays: an exponential distribution with mean $1/\lambda$ (i.e., Equation (13)), a uniform distribution over $[0, 2/\lambda]$ (i.e., Equation (31)), and a geometric distribution with mean $1/\lambda$. For the geometric distribution, $\Pr(Q = i) = \Pr(D = i) = \lambda(1 - \lambda)^{i-1}, i = 1, 2, \ldots$, assuming $\lambda < 1$. Following the steps in Section 4.1, we can obtain the botnet delay with the geometric distribution of inter-query delays, i.e., $E(T) = \sum_{i=0}^{\infty} \{1 - [1 - (1 - \lambda)]^i\}$. Figure 4 shows the botnet delays in centralized DTBs when the inter-query delays follow the exponential, uniform, or geometric distribution. Since the simulation results are identical to the analytical results, Figure 4 only gives the simulation results over 1,000 runs. It can be seen that when the delay distribution is uniform, the botnet delay is always less than $2/\lambda$. Moreover, compared with the exponential distribution, the geometric distribution spreads the command slightly faster. These results verify our analysis in Section 4.1.

5.2 Distributed DTBs

We then study the scalability of distributed DTBs through simulations. Specifically, we simulate the command delivery over Erdos-Renyi random graphs with the average nodal degree of 20. The command is initially released to a bot and then forwarded to other bots in a flooding way. A bot receives the command from one of its neighbors with a random delay that follows the geometric distribution with mean $1/\lambda$, after this neighbor obtains the command. Figure 5 shows the simulation results when N varies from 1,000 to 38,000 and λ equals 0.05 or 0.1. The curve is the average over 1,000 runs, whereas the error bar represents the standard deviation. Figure 5 also shows the analytical results. Since the geometric distribution can be regarded as the discrete-time counterpart of the exponential distribution, the analytical result of Theorem 3 is applied. It can be seen that when $\lambda = 0.1$, the analytical results almost overlap with the simulation results. When $\lambda = 0.05$, the analytical
Figure 6: Botnet delays of hybrid DTBs ($\langle k \rangle = 15$ and $\lambda = 0.1$). Servent bots construct an Erdos-Renyi random graph. The x-axis uses a log scale.

results slightly over-estimate the botnet delays because the spatial dependence over different paths is ignored. The analytical results, however, characterize the tendency of the botnet delay accurately when N varies from small to large. That is, the simulation results verify that distributed DTBs are scalable.

5.3 Hybrid DTBs

Finally, we consider the scalability of hybrid DTBs through simulations. Specifically, we simulate N_S servent bots that construct an Erdos-Renyi random graph with the average nodal degree of 15. A servent bot holds a command for a random delay that follows the geometric distribution with a mean of 10 mins. A client bot has an exponential inter-query delay with a mean of 10 mins. We consider two special cases for assigning client bots to servent bots: the uniform assignment where each servent bot has N_C/N_S client bots and the extreme assignment where all client bots are assigned to servent bot B_{P+1}. Figure 6 shows the simulation results when N varies from 1,000 to 40,000 and N_S/N equals 0.2 or 0.05. Note that the x-axis uses a log scale. As expected, the botnet delay is larger for the case of the extreme assignment. However, both N_S/N and the assignment scheme do not affect the botnet delay significantly.

6 Conclusions

In this work, we attempt to better understand the potential threats of future botnets. Specifically, we have studied DTBs that introduce random delays to command propagation, making botnet behaviors more similar to human behaviors and bots more difficult to detect. We have designed three types of DTBs: centralized, distributed, and hybrid. Through mathematical analysis, we have found that in all cases, the botnet delay increases approximately logarithmically with the number of bots. For example, when an exponential inter-query delay or forwarding delay is considered, we have shown that in a centralized botnet, the botnet delay is H_N/λ, and the standard deviation of time interval to distribute a command to all bots is bounded and is much smaller than the botnet delay. Moreover, we have discovered that in distributed delay-tolerant botnets or in the core overlay networks of hybrid delay-tolerant botnets, if an Erdos-Renyi random graph with the average nodal degree of $\langle k \rangle$ is studied, the botnet delay is $\ln(N)/(2\lambda \ln(\langle k \rangle))$. Finally, we have also used simulations to verify that the designed DTBs are indeed scalable.

From our analysis and simulations, we have demonstrated that the probability distribution of the inter-query delay or the forwarding delay has a significant impact on the performance of DTBs. In general, if the probability distribution has a smaller variance, the botnet can deliver the command to all bots faster, but the botnet contains less randomness and is easier to detect. This indicates the tradeoff between the stealth of botnets and the promptness of command propagation. Moreover, we have applied the renewal theorem to obtain a performance lower bound in DTBs and thus simplified the dynamics.

As part of our on-going work, we plan to develop effective detection and defense mechanisms against DTBs. Specifically, we will study how honeypots can potentially penetrate into DTBs and collect the information of bots. In addition, although DTBs incorporate the characteristics of human beings and make botnet traffic similar to normal traffic, we will look into different divisions of traffic (such as principal component analysis in [18]) and attempt to distinguish botnet traffic from normal traffic. Moreover, since many botnets are formed through worm propagation [4, 6], we are investigating the topologies of botnets that are built by worm infection [30]. Finally, the methodology used in this paper can be extended to analyze the message delay in P2P systems and ad hoc wireless networks and the probing delay in cognitive radio networks [3].

REFERENCES

APPENDIX (Proof of Theorem 2)

Since the CDF of random variable T follows Equation (15),

$$E(T^2) = \int_0^{\infty} 2t \bar{F}_T(t) dt$$

(44)

$$= \int_0^{+\infty} 2t \left[1 - (1 - e^{-\lambda t})^N \right] dt$$

(45)

$$= \int_0^{+\infty} 2t \left(\sum_{i=1}^{N} \binom{N}{i} (-1)^{i+1} e^{-\lambda t} \right) dt$$

(46)

$$= \sum_{i=1}^{N} \binom{N}{i} (-1)^{i+1} \int_0^{+\infty} 2te^{-\lambda t} dt$$

(47)

$$= \frac{2}{\lambda^2} \sum_{i=1}^{N} \binom{N}{i} (-1)^{i+1} \frac{1}{i^2}$$

(48)

where in Equation (46) we apply the binomial theorem. We set

$$J_n = \sum_{i=1}^{N} \binom{N}{i} (-1)^{i+1} \frac{1}{i^2}, \quad n \geq 1.$$ Then, $J_1 = 1$, and when $n \geq 1,$

$$J_{n+1} - J_n = \sum_{i=1}^{n+1} \binom{N}{i} (-1)^{i+1} \frac{1}{i^2} - \sum_{i=1}^{n} \binom{N}{i} (-1)^{i+1} \frac{1}{i^2}$$

(49)

$$= \frac{(-1)^{n+2}}{(n+1)^2} + \sum_{i=1}^{n} \left[\binom{n+1}{i} + \binom{n}{i} \right] (-1)^{i+1} \frac{1}{i^2}$$

(50)

$$= \frac{(-1)^{n+2}}{(n+1)^2} + \sum_{i=1}^{n} \binom{n}{i-1} (-1)^{i+1} \frac{1}{i^2}$$

(51)

$$= \frac{(-1)^{n+2}}{(n+1)^2} + \frac{1}{n+1} \sum_{i=1}^{n} \binom{n+1}{i} (-1)^{i+1} \frac{1}{i}$$

(52)

$$= \frac{1}{n+1} \sum_{i=1}^{n+1} \binom{n+1}{i} (-1)^{i+1} \frac{1}{i}$$

(53)

$$= \frac{H_{n+1}}{n+1},$$

(54)

where $H_n = \sum_{i=1}^{n} \binom{n}{i} (-1)^{i+1} = \sum_{i=1}^{n} \frac{1}{i}$ from Equation (26). Thus, the above derivation leads to

$$J_n = H_1 + \frac{H_2}{2} + \cdots + \frac{H_n}{n}$$

(55)

$$= \sum_{i=1}^{n} \frac{H_i}{i}$$

(56)

$$= \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{1}{ij}.$$ (57)

Therefore, using Equations (48), (57), and (27),

$$\text{Var}(T) = E(T^2) - E^2(T)$$

(58)

$$= \frac{2}{\lambda^2} J_N - \frac{1}{\lambda^2} H_N^2$$

(59)

$$= \frac{2}{\lambda^2} \sum_{i=1}^{N} \sum_{j=1}^{i} \frac{1}{ij} - \frac{1}{\lambda^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{ij}$$

(60)

$$= \frac{1}{\lambda^2} \left(\sum_{i=1}^{N} \sum_{j=1}^{i} \frac{1}{ij} - \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{ij} \right)$$

(61)

$$= \frac{1}{\lambda^2} \left(\sum_{i=1}^{N} \sum_{j=1}^{i} \frac{1}{ij} - \sum_{j=2}^{N} \sum_{i=1}^{N} \frac{1}{ij} \right)$$

(62)

$$= \frac{1}{\lambda^2} \left(\sum_{i=1}^{N} \sum_{j=1}^{i} \frac{1}{ij} - \sum_{i=2}^{N} \sum_{j=1}^{N} \frac{1}{ij} \right)$$

(63)

$$= \frac{1}{\lambda^2} \sum_{i=1}^{N} \frac{1}{i^2}$$

(64)