A Closed-Form Expression for Static Worm-Scanning Strategies

Zesheng Chen
Florida International University

Chao Chen
Indiana University – Purdue University Fort Wayne

IEEE International Conference on Communications (ICC 2008)
May 21, 2008, Beijing, China
Worm Propagation

- Worm is a program that self-propagates across Internet by exploiting security flaws
Worm Scanning Methods

- Random scanning
 - Selects target IPv4 addresses at random
 - Code Red v2, Slammer, and Witty worms

- Localized scanning
 - Preferentially searches for targets on “local” address space
 - Code Red II and Nimda worms

- Sequential scanning
 - Scans IP addresses sequentially
 - Blaster worm
Importance Scanning

\[p_g(1) \quad p_g(2) \quad \ldots \quad p_g(m) \]

- \(p_g(i) \): group distribution

\[p_g(i) = \frac{N_i}{N} \]

- \(q_i \): group scanning distribution

Infected
Importance Scanning

☐ Has shown to be able to spread worms much faster than random scanning

☐ Has two types
 ■ Static importance scanning
 ☐ OPT-STATIC and random scanning
 ■ Dynamic importance scanning
 ☐ Localized scanning and K-FAIL

In this work, we focus on static importance scanning
Motivations

☐ Why studying worm-scanning methods is important?

☐ Worm attacks present a significant threat

☐ Many applications have used epidemic-style information dissemination
 - Database maintenance
 - Streaming broadcasting
 - Web-service management

Model Worm Propagation

- **Stochastic models**
 - Capture the variance of worm spreading at the early stage
 - Require extensive computations and focus only on the early stage

- **Deterministic models**
 - Ignore the variance of worm infection and use dynamic equation
 - Difficult to understand the effects of important parameters
 - Nearly impossible to derive an exact closed-form expression from the dynamic equation
Model Worm Propagation

- Optimization methods
 - Capture parameters’ effects
 - Focus on the number of worm scans required to reach a predetermined fraction of vulnerable hosts
 - Cannot characterize the dynamic behavior of worm spreading

In this work, we derive a closed-form expression from the deterministic dynamic equation through a *mean-field* approximation
Why Not Optimization

Focus on the number of worm scans required to reach a predetermined fraction of vulnerable hosts

Mean-Field Approximation

- Gains insight into the behavior of complex systems at a relatively low cost
- Focuses on the average of the system, ignoring fluctuations
- Applies Taylor expansion and focus on the first-order term
Derivation

Dynamic differential equation:
\[\frac{dI_i(t)}{dt} = sI(t)q_i \frac{S_i(t)}{\Omega_i} \]

Mean-field approximation:
\[I_i(t) = N_i \left[1 - \left(1 - \frac{1}{\Omega_i} \right)^{q_i u(t)} \right] \]

Taylor expansion (first term):
\[\approx u(t) \frac{q_i N_i}{\Omega_i} \]
Close-Form Expression

\[I(t) = \frac{I(0)B}{I(0) + [B - I(0)]e^{-At}} \]

\[A = s \sum_{i=1}^{m} q_i N_i / \Omega_i \]

\[B = \left(\frac{\sum_{i=1}^{m} q_i N_i / \Omega_i}{\sum_{i=1}^{m} q_i^2 N_i / \Omega_i^2} \right)^2 \leq N \]

Infection rate
Performance Evaluation

- Simulate the propagation of a Witty worm
 - Vulnerable population $N = 55,909$
 - Scanning rate $s = 1,200 \text{ /sec}$

- Compare with the Analytical Active Worm Propagation (AAWP) model

- Consider a group of static worm-scanning strategies:

 $$q_i \propto \left(\frac{N_i}{N} \right)^n$$
Performance Evaluation

- **n = 0**
 - AAWP model
 - Close-form expression

- **n = 0.25**
 - Extension of AAWP model (n=0.25)
 - Close-form expression (n=0.25)
Performance Evaluation

![Graphs showing the number of infected hosts over time for different values of n.]

- $n = 0.5$
- $n = 1$
Performance Evaluation

OPT-STATIC

Uniform random sampling
Of a subset of subnets A

Conclusions and Future Work

- Present a closed-form expression
 - Mean-field approximation
- Both accurately characterize worm propagation before the late stage and explicitly capture the effects of the vulnerable-host distribution and the worm-scanning method
- Study the closed-form expression for dynamic worm-scanning methods
Thanks for your attention