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Abstract—This work presents a closed-form expression for
characterizing the spread of static worm-scanning strategies
through a mean-field approximation. Our model can both ac-
curately capture the worm propagation speed before the number
of infections becomes large and explicitly demonstrate the effects
of important parameters such as the vulnerable-host distribution
and the worm-scanning strategy. Our approach is based on
the mean-field theory that investigates the average number of
infected hosts over time. Experiments are carried out based
on the parameters chosen from the Witty worm. Experimental
results verify that the closed-form expression can accurately
reflect the mean value of infections over time before the infected
hosts become saturated for a wide range of scanning methods.
Therefore, our model can help defenders design better detection
and defense systems and provide a stepping stone towards
obtaining closed-form expressions for the propagation of dynamic
worm-scanning strategies.

I. INTRODUCTION

Worm attacks present a significant threat to the Internet. A
worm can self-propagate across the Internet in a short time by
exploiting security flaws on vulnerable hosts without human
intervention. Thus, worms, such as Code Red, Slammer, and
Witty, have infected hundreds of thousands of hosts and caused
enormous damages. Most worms use a scanning technique
that selects a target in an IP address space and then sends
out a probe to attempt to compromise this target. Among all
scanning methods, random scanning is the simplest method
that selects a target at random in the IPv4 address space and
has been widely used by real worms. Recent studies, however,
have shown that worms can potentially apply more advanced
scanning strategies, such as hitlist scanning [11], routable
scanning [13], [15], importance scanning [4], [3], and OPT-
STATIC [12]. These advanced scanning strategies have been
demonstrated to be able to spread a worm much faster than
the random-scanning method. Therefore, it is imperative that
defenders would model the spreading behaviors of advanced
worm-scanning strategies accurately.

Vojnovic et al. pointed out that studying worm-scanning
methods is also of interest in a wide variety of areas such
as streaming broadcasting, database maintenance, and Web-
service membership management [12]. These applications
potentially exploit epidemic-style information dissemination
techniques to spread information among participants quickly.
Therefore, modeling epidemic-style information dissemination

or worm-scanning strategies can provide further understand-
ings to these areas.

Most advanced worm-scanning strategies take advantage of
the non-uniform distribution of vulnerable hosts over subnets.
For example, importance scanning probes the Internet accord-
ing to an underlying vulnerable-host distribution and forces
worm scans on the most relevant parts of an address space
[4]. For these advanced scanning strategies, the Internet is
grouped into subnets according to such standards as the IP
prefix, autonomous systems, and the first byte of IP addresses
(/8 subnets). Since the distribution of vulnerable hosts over
subnets has been observed to be highly uneven [10], [12], [5],
[6], a worm would spend more scans on subnets that contain
many vulnerable hosts to speed up worm propagation. That is,
a worm scans different subnets with different likelihoods so
that a subnet containing more vulnerable hosts would be hit
by a worm scan with a higher probability.

We call the probabilities of scanning different subnets as the
group scanning distribution. If the group scanning distribution
is fixed at all times, a subnet would be hit by a worm scan with
a fixed probability, and such strategies are named static worm-
scanning strategies, including random scanning, static impor-
tance scanning [3], and OPT-STATIC [12]. Otherwise, the
group scanning distribution varies with time, and such strate-
gies are called dynamic worm-scanning strategies, including
localized scanning [8], [1], dynamic importance scanning [3],
and K-FAIL [12]. This work focuses on static worm-scanning
strategies. Specifically, we attempt to derive a closed-form
expression for the spread of static strategies. Hopefully, our
approach can provide a stepping stone towards finding closed-
form expressions for the propagation of dynamic strategies,
which are more complex and difficult to obtain.

Several approaches have been proposed to model the spread
of worms. Stochastic models have been studied to capture
the variance of worm propagation at the early stage [9], [7].
Stochastic models, however, may require extensive computa-
tions and focus only on the early stage of worm spreading.
Instead, most analytical models of worm propagation have
used deterministic dynamic equations, ignoring the variance of
worm infection [11], [16], [8], [2]. For example, the analytical
active worm propagation (AAWP) model forms a dynamic
equation to characterize the expected number of infected hosts



over time [2]. Based on dynamic equations, however, it is
difficult to understand the effects of important parameters (e.g.,
the vulnerable-host distribution and the group scanning distri-
bution) on worm propagation. Moreover, except for extreme
cases (e.g., random scanning), it is nearly impossible to derive
an exact closed-form expression from the dynamic equation.
An alternate approach to both model worm propagation and
capture parameters’ effects has been proposed by Vojnovic
et al. [12]. The authors formulate worm infection as an
optimization problem and focus on the number of worm scans
required to reach a predetermined fraction of vulnerable hosts.
In Section II, however, we point out that two worm-scanning
strategies can use the same number of worm scans to infect
the same number of hosts, but differ significantly in the worm
propagation speed. Therefore, to characterize both the worm
propagation speed and the parameters’ effects, we derive a
closed-form expression from the deterministic dynamic equa-
tion through a mean-field approximation in Section III.

A mean-field approach provides a way to gain some insight
into the behavior of complex systems at a relatively low
cost [17]. Specifically, the mean-field method focuses on the
averages of the system, ignoring fluctuations. In this work,
we neglect the fluctuation of the number of infected hosts
and derive the average of the infections in each subnet. We
further apply the Taylor expansion and focus on the first-order
term. In this way, we obtain a closed-form expression for the
spread of static worm-scanning strategies. In Section IV, our
experiments show that the closed-form expression can charac-
terize the worm propagation speed before the infected hosts
become very large (even beyond the early stage). Moreover,
our closed-form expression explicitly demonstrates the effects
of the vulnerable-host distribution and the group scanning
distribution.

Characterizing the worm propagation speed before infec-
tions become large is a key element to worm detection and
defense [14]. If a worm can compromise a large number of
hosts before it is detected, it is too late for defenders to slow
down the worm. Therefore, it is critical that defenders would
detect and fight against a worm before it infects too many
hosts. Thus, our closed-form expression provides an accurate
picture for defenders to understand the average of the worm
spreading speed in the time window of detection and defense.

The remainder of this paper is structured as follows. Section
II motivates this work. Section III derives a closed-form
expression for the spread of static worm-scanning strategies.
Section IV further verifies our model through experiments.
Section V concludes this paper.

II. MOTIVATIONS

In [12], worm propagation is formulated as an optimization
problem: minimizing the number of worm scans required
to reach a predetermined fraction of vulnerable hosts. The
authors designed the optimal static strategy and proved that
the performance of such an optimal static strategy achieves
that of the optimal dynamic strategy in terms of the minimum
number of worm scans. The authors, however, ignored the
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Fig. 1. Compare the optimal static strategy with the optimal dynamic strategy.

dynamic behaviors of worm spreading. That is, although two
strategies use the same number of worm scans to infect the
same number of vulnerable hosts, the propagation speeds can
be very different. To show this, we apply the extension of
the AAWP model [2] (Equation (21) in [4]) to characterize
the spread of the optimal static strategy (Equation (10) in
[12]) and the optimal dynamic strategy (Equation (24) in
[4]). Figure 1 shows the spreading behaviors of these two
strategies using the /8 subnets distribution of Witty-worm
victims [10]. Both strategies use 1.76 × 109 worm scans to
infect 90% of vulnerable hosts. However, while the optimal
static strategy uses 102 seconds to infect 90% vulnerable hosts,
the optimal dynamic strategy takes only 56 seconds. Therefore,
even though both the number of worm scans (or samplings)
and the number of infected hosts for these two strategies
are equal, the worm dynamic behaviors differ significantly.
This motivates us to approach the problem of modeling worm
propagation from a different aspect: to derive a closed-form
expression for the time required for a worm to infect a certain
number of vulnerable hosts.

III. A CLOSED-FORM EXPRESSION FOR STATIC

WORM-SCANNING STRATEGIES

In this section, we derive a closed-form expression for mod-
eling the spread of static worm-scanning strategies through a
mean-field approximation.

A. Static Worm-Scanning Strategies

Assume that the Internet contains Ω IP addresses (i.e., Ω =
232) and totally N vulnerable hosts. Here, the Internet is as-
sumed to be divided into m groups. Group i (i = 1, 2, · · · ,m)
contains Ωi IP addresses and has totally Ni vulnerable hosts,
where

∑m
i=1 Ωi = Ω and

∑m
i=1 Ni = N . A worm scans group

i with probability qi, where
∑m

i=1 qi = 1. Thus, qi’s form a
group scanning distribution. In this paper, qi’s are fixed at all
times, representing static worm-scanning methods. Let s be
the worm scanning rate or the rate at which an infected host
scans an address space for a vulnerable host. Suppose that



there are Si(t) uninfected vulnerable hosts and Ii(t) infected
hosts in group i at time t, where Si(t) + Ii(t) = Ni. At
time t, there are sI(t)qi worm scans hitting group i, where
I(t) is the total number of infected hosts in the Internet
and I(t) =

∑m
i=1 Ii(t). Thus, Ii(t) can be characterized by

a classic susceptible → infected (SI) epidemic model and
follows a dynamic differential equation:

dIi(t)
dt

= sI(t)
qiSi(t)

Ωi
. (1)

Summing up i = 1, 2, · · · ,m and using Si(t) = Ni − Ii(t),
we have

dI(t)
dt

= sI(t)

(
m∑

i=1

qiNi

Ωi
−

m∑
i=1

qiIi(t)
Ωi

)
. (2)

Note that if a worm uses random scanning, i.e., qi = Ωi/Ω,
Equation (2) becomes a logistic equation [18] and can lead to
a well-known closed-form solution [2]:

t =
Ω
sN

ln
I(t)[N − I(0)]
I(0)[N − I(t)]

(3)

or

I(t) =
I(0)N

I(0) + [N − I(0)]e−sNt/Ω
. (4)

In general, however, it is difficult to derive a closed-form
expression of I(t) based on Equation (2).

B. Mean-Field Approximation

To get a closed-form expression of I(t), we define u(t) as
the total number of worm scans sent by all infected hosts by
time t, i.e.,

u(t) = s

∫ t

0

I(x)dx. (5)

Since there are qiu(t) scans that hit group i among u(t) scans,
the mean value of the number of infected hosts in group i can
be derived by

Ii(t) = Ni

[
1 −

(
1 − 1

Ωi

)qiu(t)
]

, (6)

where 1 −
(
1 − 1

Ωi

)qiu(t)

is the probability that a vulnerable
host in group i is hit by at least one worm scan. The
above equation applies a mean-field approach that neglects the
fluctuation of the number of infections in group i and focuses
on the average. We apply the Taylor expansion and get

Ii(t) = u(t)
qiNi

Ωi
+ O

(
1

Ω2
i

)
. (7)

Assuming that Ωi >> 1 and qiu(t) is not very large, we
can obtain the approximation of the average of the number of
infected hosts in group i or the mean-field approximation:

Ii(t) ≈ u(t)
qiNi

Ωi
. (8)

Summing up i = 1, 2, · · · ,m, we have

u(t) =
I(t)∑m

i=1 qiNi/Ωi
. (9)

Plugging Equations (8) into Equation (2), we have

dI(t)
dt

= sI(t)

(
m∑

i=1

qiNi

Ωi
− u(t)

m∑
i=1

q2
i Ni

Ω2
i

)
. (10)

Applying Equation (9), Equation (10) becomes

dI(t)
dt

= sI(t)

(
m∑

i=1

qiNi

Ωi
−
∑m

i=1 q2
i Ni/Ω2

i∑m
i=1 qiNi/Ωi

I(t)

)
. (11)

The above equation is in the form of a logistic equation
[18] and can lead to a closed-form expression. Set A =

s
∑m

i=1 qiNi/Ωi and B =
(
∑m

i=1
qiNi/Ωi)2∑m

i=1
q2

i
Ni/Ω2

i

. The solution for

Equation (11) is

t =
1
A

ln
I(t)[B − I(0)]
I(0)[B − I(t)]

(12)

or

I(t) =
I(0)B

I(0) + [B − I(0)]e−At
. (13)

Note that if a worm uses random scanning, i.e., qi = Ωi

Ω ,
A = sN

Ω and B = N , and Equations (12) and (13) are reduced
to Equations (3) and (4), respectively.

C. Discussion

In Equations (12) and (13), A and B are two important
factors that control the spreading dynamics of a worm. Mean-
while, A and B are determined by the following parame-
ters: the scanning rate, the vulnerable-host distribution, and
the worm-scanning strategy. Thus, Equations (12) and (13)
explicitly show how these parameters affect worm spread-
ing. Specifically, when t is small and thus I(t) is small,
[B−I(0)]/[B−I(t)] is close to 1, and therefore A dominates
the worm propagation speed. It is noted that A is indeed the
infection rate of a worm that is derived in [4]. As a result,
when a worm has a larger infection rate, it can spend much
less time to infect the same number of vulnerable hosts at the
early stage. Moreover, max{A} = s · maxi{Ni/Ωi}, i.e., a
worm achieves the maximum value of the infection rate when
the worm scans only the group containing the largest number
of the vulnerable-host density. In this case, the worm uses
an extremely non-uniform scanning method. When t and I(t)
become larger, B has a greater effect on worm propagation.
It is noted that (

∑m
i=1 qiNi/Ωi)2 ≤ N

∑m
i=1 q2

i Ni/Ω2
i by the

Cauchy-Schwarz inequality, which leads to B ≤ N , where
the equality holds if and only if qi = Ωi/Ω, i.e., a worm uses
the random scanning. Thus, if a worm uses a more uniform
scanning method, B becomes larger and gets close to N , and
[B−I(0)]/[B−I(t)] becomes smaller, which leads to smaller t
in Equation (12). Therefore, A and B affect worm propagation
in very different ways.

It has been observed that if a worm uses a non-uniform
scanning method, B < N by the Cauchy-Schwarz inequality.
Meanwhile, from Equation (13), it can be seen that I(t) ≤ B
even when t is very large, assuming B ≥ I(0). Thus, for
the model described by Equation (13), a worm cannot infect
more than B vulnerable hosts. This may not be valid, since
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(a) n = 0.
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 Extension of AAWP model (n=0.25)
 Close−form expression (n=0.25)

(b) n = 0.25.
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 Extension of AAWP model (n=0.5)
 Close−form expression (n=0.5)

(c) n = 0.5.
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(d) n = 1.

Fig. 2. Compare the closed-form expression with the extension of the AAWP model.

a worm can infect all N vulnerable hosts under the condition
that qi > 0, if Ni > 0 for ∀i. Therefore, when t is very large,
the model may not describe the worm behavior accurately.
The reason for this inaccuracy is that in Equation (8), we
assume that qiu(t) is not very large and ignore the higher
order terms of the Taylor expansion. Furthermore, based on
the above analysis, if a worm uses a more uniform scanning
method, B gets closer to N , and our model is more accurate.

IV. EXPERIMENTAL RESULTS

We evaluate our designed closed-form expression through
experiments. In our experiments, we simulate the propagation
of a Witty worm that has a vulnerable population N = 55, 909
and a scanning rate s = 1, 200 per second [10]. We ignore the
effect of disk damages on the Witty worm propagation. We
assume that a worm begins spreading from 10 initially infected
host (i.e., I(0) = 10). In our setting, static worm-scanning
strategies exploit the /8 subnets distribution (i.e., Ω1 = Ω2 =
· · · = Ω256 = 224). Then, we compare worm propagation
characterized by the closed-form expression (Equation (13))

with worm spreading described by the extension of the AAWP
model (Equation (21) in [4]).

We first consider a group of static worm-scanning strategies
where qi’s relate to Ni’s explicitly, i.e.,

qi =
Nn

i∑m
i=1 Nn

i

∝
(

Ni

N

)n

(14)

where n ≥ 0, representing how strongly qi depends on Ni/N .
If n = 0, qi’s are equal and are independent of Ni/N ’s. In
this case, the worm uses random scanning. When n becomes
larger, the worm would focus more scans on the groups with
a large number of vulnerable hosts, which represents a more
non-uniform scanning strategy. Figure 2 compares two worm
propagation models when n = 0, 0.25, 0.5, and 1. It can be
seen that when n = 0, i.e., the worm uses random scanning,
the curves for both models overlap. When n increases, the
closed-form expression describes worm behaviors exactly the
same as the extension of the AAWP model before I(t)
becomes very large. As we expect, when I(t) is very large,
our designed closed-form expression cannot characterize worm
dynamics as a result of the effect of the parameter B. Before
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(a) OPT-STATIC.
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(b) Uniform random sampling of a subset of subnets A.

Fig. 3. Two static scanning strategies from [12].

the infected hosts become saturated, however, the closed-form
expression characterizes the average of the number of infected
hosts accurately. Moreover, the model is more accurate if the
scanning strategy is more uniform (i.e., when n is smaller).

We further apply our model to describe the static strategies
proposed in [12]. Specifically, we consider “OPT-STATIC” and
“uniform random sampling of a subset of subnets A” strategies
that are described in [12]. It can be seen from Figure 3 that
our designed closed-form expression can accurately capture
the dynamic worm behaviors. Furthermore, we observe that
the spreading speeds of these two strategies are very different.
While the “OPT-STATIC” strategy takes only 102 seconds to
infect 90% vulnerable hosts, the “uniform random sampling
of a subset of subnets A” strategy requires 155 seconds.
The optimization method proposed in [12], however, cannot
characterize this difference in the worm propagation speed.

V. CONCLUSIONS

In this paper, we have presented a closed-form expres-
sion for modeling the propagation of static worm-scanning
strategies. Our model can both accurately characterize the

worm propagation speed in the time window of detection and
defense and explicitly capture the effects of the vulnerable-
host distribution and the worm-scanning method. Therefore,
our model can complement with the existing models such as
stochastic models [9], [7], deterministic models [16], [2], and
optimization methods [12], [3].

As part of our ongoing work, we plan to extend our
approach to study the closed-form expressions for modeling
the spread of dynamic worm-scanning strategies.
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