Modeling the Spread of Influence for Independent Cascade Diffusion Process in Social Networks

Dr. Zesheng Chen and Kurtis Taylor

Indiana University - Purdue University Fort Wayne

Social Influence in Online Social Networks

■ Viral marketing ("word-of-mouth")

- Blog information cascading
- Rumor spreading

Bear a resemblance to epidemic process!

Epidemic Process

- Epidemic process is a process that information selfpropagates across networks

Classic Influence Diffusion Processes

- Two basic diffusion processes
\square Independent Cascade (IC)
\square Linear Threshold (LT)
■ Study the influence maximization problem

In this work, we focus on the IC diffusion process.

Refer to KDD'03 by Kempe, Kleinberg, and Tardos.

Independent Cascade (IC) Diffusion Process

■ When a node in a social network becomes active (or infected), it has a single chance of activating (or infecting) each currently inactive neighbor.

- The activation attempt succeeds with a probability.

Refer to KDD'03 by Kempe, Kleinberg, and Tardos.

TRW Example of IC Diffusion

Stop!

Refer to www.cs.cmu.edu/~xiaonanz/Maximizing-the-Spread-of-Influence.ppt

IC Diffusion Process

- Can be characterized by a susceptible-infected-recovered (SIR) mathematical model form epidemiology.

Fig. 1. SIR model for node i.

Questions

- How can we find an accurate mathematical model to characterize the spread of influence for the IC diffusion process in online social networks?

■ Can spatial dependence among nodes affect the accuracy of mathematical models? If so, how significantly?

- How can such an accurate mathematical model help to solve the influence maximization problem?

Outline

- Mathematical Framework and Models
- Performance Evaluations

Mathematical Framework

- $X_{i}(t)$: status of node i at time t

$$
\begin{aligned}
X_{i}(t)= & \left\{\begin{array}{cc}
\mathbf{0}, & \text { if susceptible } \\
\mathbf{1}, & \text { if infected } \\
-\mathbf{1}, & \text { if recovered }
\end{array}\right. \\
& 1-\beta_{i}(t)
\end{aligned}
$$

Fig. 1. SIR model for node i.

$$
\begin{gathered}
\boldsymbol{S}_{i}(t+\mathbf{1})=\boldsymbol{S}_{i}(t)\left[\mathbf{1}-\boldsymbol{\beta}_{i}(t)\right] \\
\boldsymbol{I}_{i}(t+\mathbf{1})=\boldsymbol{S}_{i}(t) \boldsymbol{\beta}_{i}(t) \\
\boldsymbol{R}_{i}(t+\mathbf{1})=\boldsymbol{I}_{i}(t)+\boldsymbol{R}_{i}(t)
\end{gathered}
$$

Mathematical Framework

$$
\begin{gathered}
\boldsymbol{\beta}_{i}(t)=\sum_{x_{N_{\boldsymbol{i}}}(t)} \boldsymbol{P (X _ { N _ { \boldsymbol { i } } } (t) = \boldsymbol { x } _ { \boldsymbol { N } _ { \boldsymbol { i } } } (t) | X _ { i } (t) = 0)} \cdot \boldsymbol{f}_{\boldsymbol{i}}(t) \\
\boldsymbol{f}_{i}^{\boldsymbol{I C}}(t)=\mathbf{1}-\prod_{j \in N_{\boldsymbol{i}}}\left(\mathbf{1}-\beta_{j i}\right)^{\frac{x_{j}^{2}(t)+x_{j}(t)}{2}}
\end{gathered}
$$

(TV) Independent Model

- Assume spatial independence between nodes

$$
\begin{gathered}
\boldsymbol{P}\left(\boldsymbol{X}_{\boldsymbol{N}_{i}}(t)=\boldsymbol{x}_{\boldsymbol{N}_{i}}(t) \mid X_{i}(t)=0\right)=\prod_{j \in N_{i}} \boldsymbol{P}\left(X_{j}(t)=x_{j}(t)\right) \\
\boldsymbol{\beta}_{i}^{\text {IC_ind }}(t)=\mathbf{1}-\prod_{j \in \boldsymbol{N}_{i}}\left(\mathbf{1}-\boldsymbol{\beta}_{j i} I_{j}(t)\right)
\end{gathered}
$$

Such a model has been applied in previous work.

Markov Model

- Assume spatial Markov dependence
- Inspired by the local Markov property of Markov Random Field

$$
\begin{aligned}
& \boldsymbol{P}\left(\boldsymbol{X}_{\boldsymbol{N}_{\boldsymbol{i}}}(t)=\boldsymbol{x}_{\boldsymbol{N}_{\boldsymbol{i}}}(t) \mid X_{i}(t)=\mathbf{0}\right) \\
= & \prod_{j \in N_{\boldsymbol{i}}} \boldsymbol{P}\left(X_{j}(t)=x_{j}(t) \mid X_{i}(t)=\mathbf{0}\right)
\end{aligned}
$$

$\boldsymbol{\beta}_{i}^{\text {IC_mar }}(t)=\mathbf{1}-\prod_{j \in N_{i}}\left[\mathbf{1}-\boldsymbol{\beta}_{j i} \boldsymbol{P}\left(X_{j}(t)=\mathbf{1} \mid X_{i}(t)=\mathbf{0}\right)\right]$

Outline

- Mathematical Framework and Models
- Performance Evaluations

Simulation Setup

- Simulate the spread of influence for the IC diffusion process in an undirected graph
- Assume the influence probability is the same for all links and $0.001 \leq \beta \leq 0.1$
- Use discrete time and random number generator
- Run 20,000 times using different seeds for each scenario

-
 BA Power-Law Topology (1,000 Nodes)

$\beta=0.1$

$\beta=0.1$
Influence of the node with the largest nodal degree

Lattice Topology (2,500 Nodes)

Influence of the node with the largest nodal degree

$$
\beta=0.1
$$

ER Random Graph (1,000 Nodes)

Influence of the node with the largest nodal degree

$$
\beta=0.1
$$

Exponential Growth Random Graph (1,000 Nodes)

Influence of the node with the largest nodal degree

$\beta=0.1$

A Real Topology

- Coauthorship network of scientists working on network theory and experiment.

Influence of the node with the largest nodal degree

Time to Run Simulations and Markov Model

- Coauthorship network
\square Simulation took about 374 seconds
\square Markov model used only 6 seconds

Conclusions

■ An accurate mathematical model needs to consider the spatial dependence among nodes in social networks.

- Spatial dependence among nodes significantly affect the accuracy of mathematical models.
\square Spatial Markov dependence
- Our Markov model can significantly reduce the time to predicate the influence of a node and can complement to the solutions to the influence maximization problem.

Thanks for your attention

