Modeling the Spread of Influence for Independent Cascade Diffusion Process in Social Networks

Dr. Zesheng Chen and Kurtis Taylor

Indiana University – Purdue University Fort Wayne

Social Influence in Online Social Networks

- Viral marketing ("word-of-mouth")
- Blog information cascading
- Rumor spreading

Bear a resemblance to epidemic process!

Classic Influence Diffusion Processes

Two basic diffusion processes
 Independent Cascade (IC)
 Linear Threshold (LT)

Study the influence maximization problem

In this work, we focus on the IC diffusion process.

Refer to KDD'03 by Kempe, Kleinberg, and Tardos.

Independent Cascade (IC) **Diffusion Process**

- When a node in a social network becomes active (or infected), it has a single chance of activating (or infecting) each currently inactive neighbor.
- The activation attempt succeeds with a probability.

Refer to KDD'03 by Kempe, Kleinberg, and Tardos.

Refer to www.cs.cmu.edu/~xiaonanz/Maximizing-the-Spread-of-Influence.ppt

IC Diffusion Process

Can be characterized by a susceptibleinfected-recovered (SIR) mathematical model form epidemiology.

Fig. 1. SIR model for node *i*.

Questions

- How can we find an accurate mathematical model to characterize the spread of influence for the IC diffusion process in online social networks?
- Can spatial dependence among nodes affect the accuracy of mathematical models? If so, how significantly?
- How can such an accurate mathematical model help to solve the influence maximization problem?

Mathematical Framework and Models Performance Evaluations

Mathematical Framework

• $X_i(t)$: status of node *i* at time *t*

 $X_i(t) = \begin{cases} 0, & if susceptible \\ 1, & if infected \\ -1, & if recovered \end{cases}$

Fig. 1. SIR model for node *i*.

 $S_i(t+1) = S_i(t) [1 - \beta_i(t)]$ $I_i(t+1) = S_i(t) \beta_i(t)$ $R_i(t+1) = I_i(t) + R_i(t)$

10

Mathematical Framework

$$\boldsymbol{\beta}_{i}(t) = \sum_{\boldsymbol{x}_{N_{i}}(t)} \boldsymbol{P}(\boldsymbol{X}_{N_{i}}(t) = \boldsymbol{x}_{N_{i}}(t) | \boldsymbol{X}_{i}(t) = 0) \cdot \boldsymbol{f}_{i}(t)$$

$$f_i^{IC}(t) = \mathbf{1} - \prod_{j \in N_i} (\mathbf{1} - \beta_{ji})^{\frac{x_j^2(t) + x_j(t)}{2}}$$

Independent Model

Assume spatial independence between nodes

$$P(X_{N_i}(t) = x_{N_i}(t) | X_i(t) = 0) = \prod_{j \in N_i} P(X_j(t) = x_j(t))$$

$$\boldsymbol{\beta}_i^{IC_ind}(t) = \mathbf{1} - \prod_{j \in N_i} (\mathbf{1} - \boldsymbol{\beta}_{ji} I_j(t))$$

Such a model has been applied in previous work.

Markov Model

Assume spatial Markov dependence Inspired by the local Markov property of Markov Random Field

$$P(X_{N_i}(t) = x_{N_i}(t) | X_i(t) = \mathbf{0})$$
$$= \prod_{j \in N_i} P(X_j(t) = x_j(t) | X_i(t) = \mathbf{0})$$

 $\boldsymbol{\beta}_i^{IC_mar}(t) = \mathbf{1} - \prod_{j \in N_i} [\mathbf{1} - \boldsymbol{\beta}_{ji} \boldsymbol{P} (X_j(t) = \mathbf{1} \mid X_i(t) = \mathbf{0})]$

Mathematical Framework and Models Performance Evaluations

Simulation Setup

- Simulate the spread of influence for the IC diffusion process in an undirected graph
- Assume the influence probability is the same for all links and $0.001 \le \beta \le 0.1$
- Use discrete time and random number generator
- Run 20,000 times using different seeds for each scenario

BA Power-Law Topology (1,000 Nodes)

Influence of the node with the largest nodal degree

β = 0.1

the largest nodal degree

 $\beta = 0.1$

Exponential Growth Random Graph (1,000 Nodes)

the largest nodal degree

NYINI PERSON WAYNE

UNIVERSIT F

19

A Real Topology

Coauthorship network of scientists working on network theory and experiment.

Time to Run Simulations and Markov Model

Coauthorship network
 Simulation took about 374 seconds
 Markov model used only 6 seconds

Conclusions

- An accurate mathematical model needs to consider the spatial dependence among nodes in social networks.
- Spatial dependence among nodes significantly affect the accuracy of mathematical models.

Spatial Markov dependence

Our Markov model can significantly reduce the time to predicate the influence of a node and can complement to the solutions to the influence maximization problem.

Thanks for your attention

