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Abstract—Modeling the spread of influence in online social
networks is important for predicting the influence of individuals
and better understanding many scenarios in social networks, such
as the influence maximization problem. The previous work on
modeling the spread of influence makes the assumption that the
statuses of nodes in a network are independent of each other,
which is apparently not correct for social networks. The goal
of this work is to derive an accurate mathematical model to
characterize the spread of influence for the independent cascade
diffusion process in online social networks. Specifically, we apply
the susceptible-infected-recovered epidemic model from epidemi-
ology to characterize the independent cascade diffusion process
and derive a general mathematical framework. To approximate
the complex spatial dependence among nodes in a network, we
propose a Markov model to predict the spread of influence.
Through the extensive simulation study over several generated
topologies and a real coauthorship network, we show that our
designed Markov model has much better performance than
the existing independent model in predicting the influence of
individuals in online social networks.

Index Terms—Social influence, online social networks, indepen-
dent cascade diffusion, spatial dependence, Markov dependence.

I. INTRODUCTION

Influence can spread through an online social network.
“Word-of-mouth” and “viral marketing” effects have been
widely exploited to promote new products and technological
innovations. For example, when an individual adopts a new
product and finds it useful, she or he may post the information
to her or his Facebook and recommend it to friends and
colleagues. One of this individual’s friends takes the advice,
and may also feel excited about the product and spread the
words about it to her or his own friends through Facebook. In
such a way, social influence can help diffuse new products or
ideas. A classic research problem on the spread of influence is
called the influence maximization problem, which studies how
to choose few key individuals in a social network to give free
samples of a product so that it can maximize the number of the
individuals who will eventually adopt the product [1], [2], [3],
[4], [5]. There are two basic influence diffusion processes that
have been widely investigated: independent cascade and linear
threshold [1]. In this paper, we will focus on the independent
cascade diffusion process.

The spread of influence in online social networks bears
resemblance to epidemic processes in networks, such as mal-
ware spread and information dissemination [6], [7], [8], [9],
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[10], [11], [12]. Thus, epidemic models have been applied
to modeling the influence propagation in social networks
[13], [14], [15]. The mathematical models in previous work,
however, make the assumption that the statuses of nodes in a
network are independent of each other. Such an assumption is
apparently not accurate. For example, two friends in an online
social network tend to both either adopt a product or reject
it. That is, the statuses of nodes in online social networks are
spatially positively correlated.

The goal of this work is to find an accurate mathematical
model to characterize the spread of influence for the inde-
pendent cascade diffusion process in online social networks.
Specifically, we attempt to apply a mathematical model to
answer the question: given an online social network and an
individual (or several individuals) who initially adopt(s) a
product, what is the expected number of people who will
eventually adopt the product? The answer to this question
can potentially help better understand many scenarios on
social influence, such as the influence maximization problem.
Specifically, the traditional way for the influence maximization
strategy to predict the influence of initially selected nodes is to
use simulations [1], [3], [5], which usually take a long time to
run. Our proposed mathematical model can potentially provide
the same or similar prediction in a significantly shorter time.

In this work, we first apply the susceptible-infected-
recovered model from epidemiology to characterize the in-
dependent cascade diffusion process. We then focus on ap-
proximating the complex spatial dependence among nodes in
a network. Specifically, we apply a spatial Markov dependence
assumption and propose a new mathematical model. Finally,
we use simulations to evaluate the performance of our model.
We summarize our contributions in the following:

o We derive a general mathematical framework to charac-
terize the spread of influence in online social networks
and point out the difficulty in finding an accurate model.

o We consider two different approximations for the above
model: the independent model and the Markov model.
The independent model is based on the spatial indepen-
dence assumption that has been applied to the previous
work [14], [15], whereas the Markov model is inspired
by the Markov Random Field and considers a certain
spatial dependence. Through extensive simulations over
several generated topologies (i.e., a power-law topology,
a lattice, an ER random graph, and an exponential growth
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Fig. 1. SIR model for node i.

random graph) and a real coauthorship network, we show
that the Markov model better characterizes the spread of
influence than the independent model and can accurately
predict the number of people who will eventually adopt
the product.

The remainder of this paper is structured as follows. Sec-
tion II introduces the independent cascade diffusion process.
Section III derives a general mathematical framework and
proposes a Markov model, and Section IV evaluates the
performance of our designed Markov model and compares it
with the independent model and simulation results. Finally,
Section V presents the related work and discussions, and
Section VI concludes this paper.

II. INDEPENDENT CASCADE DIFFUSION PROCESS

The independent cascade (IC) diffusion process has been
widely used to describe the procedure of influence diffusion
in social networks [1]. Specifically, consider a discrete-time
system. A set of nodes are initially infected (or active). If a
node i first becomes infected at time ¢, it will have a single
chance to infect its susceptible neighbor j (that is not infected
yet) with an influence probability 3;;. If node 4 succeeds, then
node j will become infected at time ¢ + 1. After time ¢, node
¢ cannot make any further attempts to infect its neighbors.
Such a diffusion process continues until no more infections
are possible [1].

The IC diffusion process can be well characterized by a
susceptible-infected-recovered (SIR) mathematical model from
epidemiology [13]. As shown in Figure 1, node ¢ has three
statuses: susceptible, infected, and recovered. At time ¢, if
node 7 is susceptible, it can either be infected by its infectious
neighbors with probability /3;(t) or stay in the susceptible
status with probability 1 — 3;(¢). If node 4 is infected at time
t, it can attempt to infect its susceptible neighbors, but it will
become recovered at time ¢ + 1 with probability 1. If node ¢
is recovered, it cannot infect any other nodes and will stay in
the recovered status forever.

III. MATHEMATICAL MODELS

In this section, we first discuss the system model and topolo-
gies. Next, we present a general mathematical framework to
describe the spread of influence in online social networks using
the IC diffusion process and point out the difficulty in finding
the exact solution. Finally, we consider two different spatial
approximation methods to derive the recursive equations: the
independent model and the Markov model.
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A. System Model

Let G(V, E) represent an online social network, where V' is
the set of nodes and E is the set of links. We consider directed
graphs and treat undirected graphs as special cases of directed
graphs. In an undirected graph, if a link (i,7) € FE, then
(4,i) € E. Let N; = {j|(j,4) € E} denote a neighborhood of
node 7, i.e., a set of nodes that can influence node ¢ directly.
Let n = |V| denote the number of nodes in the network.
Similarly, |V;| denotes the number of neighbors of node 1.

Different networks may have different topological struc-
tures. Typical generated topologies include lattice, ER random,
exponential growth random, and power-law graphs. A lattice
graph is a regular topology, in which each node has four
neighbors [9]. An ER random graph is formed by considering
all possible pairs of nodes and connecting a pair with a
probability [16]. An exponential growth random graph is built
through a sequential growth model that adds nodes one by
one to the graph and connects the newly added node to each
existing node with equal likelihood (i.e., uniform attachment)
[17], [18]. A power-law topology is similar to the exponential
growth random graph, but the probability that the newly added
node connects to an existing node is based on the nodal degree
of this existing node (i.e., preferential attachment) [17], [19].

B. Mathematical Framework

We apply the SIR model to characterize the spread of
influence in online social networks. Specifically, let X, (t)
denote the status of node ¢ at time ¢, i.e.,

0, if node 7 is susceptible at time ;
Xi(t) =< 1, if node 7 is infected at time t; (1)
—1, if node ¢ is recovered at time .

Similarly, let X, (¢) denote the statuses of node i’s neighbors
at time ¢. There are 3!Vil possible combinations for Xy, (t).
Let S;(t), I;(t), and R;(t) denote the probabilities that node i
is susceptible, infected, and recovered at time ¢ (¢ > 0), where
i=1,2,---,n.Note that S;(t)+I;(t)+ R;(t) = 1. The status
of node 7 at time ¢ + 1 can be expressed based on its status
and its neighbors’ statuses at time ¢ (as shown in Figure 1),
ie.,

Sit+1) = Sit)[1—Bi(t)] )
L(t+1) = Si(t)B:(t) 3)
Ri(t+1) = Li(t)+ Ri(t) )

where $3;(t) is the probability that node ¢ will be infected by
its infectious neighbors at time ¢+ 1, given that it is susceptible
at time ¢, i.e.,

Bi(t)

= P(Xi(t+1) =1X;(t) =0)

> P(Xi(t+1) =1, Xy, (t) = xn, (£)| X;(t) = 0)
xn; (t)

Y P(Xu,(t) = xn,(8)|Xi(t) = 0) - fult)

XN; (f)

)



where
fi(t) = P(X;(t+ 1) = 11X, (t) = xn, (t), X;(t) = 0), (6)

which represents the probability that the node 7’s neighbors
can infect the susceptible node ¢ and depends on the diffusion
process.

If the IC diffusion process is considered, node 7 can be
infected only by its neighbors that are in the infected status,
ie., z;(t) =1, j € N;. If neighbor j of node 7 is susceptible
or recovered (i.e., x; (t) = 0 or —1), the probability that node j
will not infect node 7 is 1 (i.e., (1fﬁji)0); otherwise, neighbor
Jj is infected (i.e., z;(t) = 1), and it will not infect node ¢ with
the probability 1 — 3j; (i.e., (1 — B3;;)!). Combining these two
cases together, we can find that the probability that neighbor

m?(t)+m]‘(t)
J will not infect node ¢ at time ¢ is (1 — ;)= 2z, where
zj(t) = —1, 0, or 1. Since all infected neighbors of node

7 attempt to infect node 7 independently, the probability that
node 7 will not be infected by its neighbors at time ¢ becomes

w2 (t)+a (1) )
[ljen, (1 = Bji) ==, which leads to
22 (t) 4 (t)
fl-IC(t) —-1— H 1- ﬂjz‘)% 7

JEN;
representing the probability that the node ¢’s neighbors can
infect susceptible node ¢ for the IC diffusion process.

The difficulty in finding 3;(¢) lies in computing the con-
ditional joint distribution P(Xy,(t) = xn,(t)|X:(t) = 0),
i.e., given node 7 is susceptible at time £, computing the joint
distribution of all its neighbors’ statuses at time ¢. If node ¢
has k£ neighbors, the number of the possible combinations of
these statuses is 3, which is too expensive to compute. To
reduce the computation, we consider two approximations to
this conditional joint distribution.

C. Independent Model

The simplest way to approximate the distribution is to
assume that all nodes are independent at time t, which has
been applied in previous work [14], [15]. That is, assume that
the statuses of node ¢ and its neighbors are independent, which
leads to

P(Xy, (t) = xn,(0)1Xi(8) = 0) = [T POGE®) = a5(8)).

JEN;
)]
Putting this equation and Equation (7) into Equation (5), we
can find the simplified 3;(¢) for the IC diffusion process:
Bl ()
= >[I P00 = 25(0) - £°0)
xn, () JEN;

@2 (t)+a;(t)

1= H Z P(X;(t) = z;(8)(1 = Bj) 2

JEN; z;(t)

=1- H [1— B P(X;(t) =1)]
JEN;

=1- [T @ -su;). ©)
JEN;

Putting 8/¢-"4(t) into Equations (2) and (3), we can find
Si(t), I;(t), and R;(t) recursively from S;(0), I;(0), and
R;(0).

Comparing with the previous work, we find that the unified
model proposed in [14] for the IC diffusion process (i.e.,
Equation (11) in [14]) is the same as the independent model
in Equation (9). Moreover, the inclusion-exclusion theorem
shown in [15] (i.e., Theorem 1 and Equation (9) in [15])
is indeed the independent model by expanding the product
term in Equation (9). Therefore, the independent model is
essentially the model considered in the previous work [14],
[15]. Although the independent model has been proposed in
the previous work, in this paper we derive it under a general
mathematical framework.

D. Markov Model

In the Markov model, we assume that given node i is
susceptible, the statuses of its neighbors are conditionally
independent, i.e.,

P(Xn, (t) = xn, ()| Xs(t) = 0)
= [ Px;(t) = 2;(0)|Xi(t) =0).  (10)
JEN;

Such an approximation is inspired by the local Markov
property in Markov Random Field and has been applied in
modeling malware propagation in networks [10]. The intuition
behind Equation (10) is that the status of node ¢ is not
independent of its neighbors, but is indeed affected by them.
As pointed out in the Introduction, two friends in a social
network tend to agree upon the decision of adopting or
rejecting a product. The spatial dependence of two friends is
positively correlated. Moreover, since the status of neighbor j
of node 7 depends on its own neighbors, the status of node @
can rely on the neighbors of node j. In such a way, all nodes in
a connected graph can depend on each other spatially. To avoid
the extensive computation on the complex spatial dependence,
in this paper we consider the one-step spatial dependence as
shown in Equation (10), i.e., spatial conditional independence.
Considering the IC diffusion process,, we have

ﬁifc_mar(t)
> I PS50 = 2 01X:(t) = 0) - £ (1)

xNi(t)jENi
=1- ] = 8:P(X;(t) =1X,(6) =0)]. (1D
JEN;

To find 3/¢-"97(t), we need to derive the expression of
P(X;(t) = 1|X;(t) = 0). Set M(i,j,t) = P(X;(t) =
0, X;(t) = 0) and N(i,j, 1) = P(Xi(t) = 0,X;(t) = 1).
Moreover, use the notation

Bis(t) = Y P(Xpi(t) =xn:(8)|Xi(t) = 0) - fi(t) (12)
xN{(t)

where N/ = N;—{j}. That is, consider the effect of neighbors
without node j.
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Fig. 2. Influence spreads over a BA power-law topology (n = 1, 000).

Note that
M (i, j,t)
=P(X;(t)=0,X;(t)=0,X;(t—1)=0,X,(t —1)=0)
=M(i,j,t —=1)(1 = B/t = 1)) (1 = Bt —1))  (13)
and
N(i, j, t)
=P(X;(t)=0,X;(t) =1,X;(t—1)=0,X,(t —1)=0)

= Mt~ 1)1~ gyt = 1)y lt 1) (14
Thus, NG
PIGO =110 =0 = TEEL

Assuming the initial condition (i.e., S;(0), 1;(0), R;(0),
]\/[(Zvja O)v and N(Z7]7 0))a we can find Sl(t)’ Iz(t)7 RZ(t)s
M(i,j,t), and N (i, 4, t) recursively.

IV. SIMULATION RESULTS AND PERFORMANCE
EVALUATION

In this section, we evaluate the performance of two models
on predicting the spread of influence in online social networks
through simulations. Specifically, we first discuss the simula-
tion setup. We then evaluate the performance of models in
both generated topologies and a real topology.

A. Simulation Setup

We simulate the spread of influence for the IC diffusion
process in an undirected graph and assume that the influence
probability is the same for all links (i.e., 8;; = 3, V(i,j) € E).
A discrete-time system is considered. In each time step, if a
node is susceptible, one of its infected neighbors can infect it
with an influence probability /3. If this node is infected, it can
potentially infect its neighbors and will recover at the next time
step. Otherwise, the node is recovered; and it cannot infect
any other nodes and will stay in the recovered status forever.
We run 20,000 times using different seeds for each scenario
and average the number of final infections (i.e., number of
recovered nodes at the end) over these 20,000 runs. In each
run, the simulation starts from a single infected node and

154

continues running until no more infections are possible. If a
topology is not connected, we consider the spread of influence
in the giant component. For the influence probability 3, similar
to [2], we assume 0.001 < 3 < 0.1. Specifically, the case of
B = 0.1 indicates high influence.

B. Generated Topologies

We compare the performance of mathematical models (i.e.,
independent model and our proposed Markov model) with
simulation results for several generated topologies. We first
consider a Barabdsi-Albert (BA) power-law topology gener-
ated by the BRITE tool [20]. The topology contains 1,000
nodes and has an average nodal degree of 3.99. Figure 2(a)
shows how the number of infected and recovered nodes varies
with time, when the infection starts from a single node with
the largest nodal degree and the influence probability is 0.1
(i.e., B = 0.1). It can be seen that the independent model
overestimates the spread ability of the infection, whereas the
Markov model accurately predicts the spread process. Figure
2(b) indicates how the number of final infections changes with
the influence probability 8 (0.001 < 8 < 0.1). Similarly, the
initially infected node is the one with the largest nodal degree.
It can be seen that when [ is small, both models work well.
When § is large (e.g., 5 > 0.06), however, the performance of
the Markov model is much better than that of the independent
model. Figure 2(c) shows the number of final infections for
every node selected as the starting node, when § = 0.1. The
number is in descending order, according to the simulation
results. Obviously, the Markov model can accurately estimate
the number of final infections when the starting node is an
arbitrary node.

Next, we simulate the spread of influence in other generated
topologies. Figures 3 and 4 shows the influence propagation
in the lattice, ER random, and exponential growth random
graphs. In the simulation, the lattice graph contains 2,500
nodes, each of which has four neighbors. The ER random
graph contains 1,000 nodes and has an average nodal de-
gree of 7.91. The exponential growth random graph is with
1,000 nodes and an average nodal degree of 3.99. Similar
to Figure 2(b), Figure 3 indicates how the number of final
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infections varies with the influence probability 3, when the
initially infected node is the one with the largest nodal degree.
Moreover, similar to Figure 2(c), Figure 4 plots the number
of final infections for every node selected as the starting node,
when § = 0.1. It can be seen that in all generated topologies,
the independent model overestimates the influence ability of
a node, whereas the results from the Markov model overlap
with those from simulations. Therefore, the Markov model
performs much better than the independent model. It is noted
that due to the symmetric property of a regular graph, the
number of final infections are (almost) identical for all nodes
in the lattice topology, as shown in Figure 4(a).

C. A Real Topology

We further consider a real topology that is a coauthorship
network of scientists working on network theory and experi-
ment [21]. Since this real topology is not connected, we only
consider the giant component with 379 nodes and an average
nodal degree of 4.82. Figure 5 plots how the number of final
infections changes with the influence probability 8 when the
initially infected node is the one with the largest nodal degree,
whereas Figure 6 shows the number of final infections for
every node selected as the starting node when 5 = 0.1. Similar
to Figures 2, 3, and 4, we can see that the Markov model
closely follows the simulation results and better characterizes

the spread of influence in the coauthorship network than the
independent model.

V. RELATED WORK AND DISCUSSIONS

The spread of information or malware in networks has been
studied in [9], [10], [11], [12]. The epidemiological model
considered in these works is usually either the susceptible-
infected (SI) model or the susceptible-infected-susceptible
(SIS) model. As pointed out in [13], the IC diffusion process
in social networks is better characterized by the SIR model.

The spread of influence for the IC diffusion process in
social networks has been modeled in [14], [15]. In the previous
work, however, it is assumed that all nodes in a network are
independent of each other. In this paper, we have shown that
the models in [14], [15] are essentially the independent model
under the general mathematical framework.

One application of modeling the spread of influence in
social networks is for the influence maximization problem
(IMP), which has been widely studied [1], [2], [3], [4]. [5].
The conventional approach to evaluate a strategy for IMP is
to apply simulations. For instance, in [1], each of different
strategies (i.e., greedy, high degree, central, and random) runs
10,000 times in simulations, which take a long time to get the
results. An accurate mathematical model can shorten the time
significantly. For example, in our performance evaluation over
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the coauthorship network using a computer with high power
processors, the simulation took about 374 seconds to get the
average of 20,000 runs, whereas the Markov model used only
6 seconds. Therefore, our proposed model can complement
the solutions to IMP.

VI. CONCLUSIONS

In this work, we have explored the spatial Markov depen-
dence among nodes and proposed a new mathematical model
to describe the spread of influence for the IC diffusion process
in online social networks. Our designed model takes into
consideration a certain spatial dependence. Through extensive
simulations over several generated topologies and a real coau-
thorship network, we have shown that our proposed Markov
model better characterizes the process of IC diffusion in online
social networks than the existing independent model.

As our on-going work, we plan to extend our model for the
linear threshold diffusion process described in [1].
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