
Delay-Tolerant Botnets
Zesheng Chen1, Chao Chen2, and Qian Wang1

1Department of Electrical & Computer Engineering 2Department of Engineering
Florida International University Indiana University - Purdue University Fort Wayne

Miami, FL 33174 Fort Wayne, IN 46805
E-mails: {zchen, qian.wang}@fiu.edu E-mail: chen@engr.ipfw.edu

Abstract—Botnets have become one of top threats to the
Internet. Many detection methods have been developed to dis-
tinguish botnet behaviors from normal human behaviors. Future
botnets, however, may incorporate the characteristics of human
beings and weaken the existing detection techniques. In this
work, we study an intelligent botnet, called the delay-tolerant
botnet, that intentionally adds random delays to the command
propagation and endeavors to avoid the detection. We then apply
mathematical analysis to derive the average delay required to
distribute a command to all bots in three types of command
and control architectures: centralized, distributed, and hybrid
delay-tolerant botnets. We find that in all cases, the delay
increases approximately logarithmically with the number of bots,
indicating that the delay-tolerant botnets are scalable. Finally, we
verify the analytical results by simulations.

I. INTRODUCTION

A botnet is a network of compromised computers that are
organized by a malicious attacker called the botmaster. Botnets
have been exploited to set off denial-of-service attacks, send
spam emails, and search for confidential information. For
example, the Storm botnet affected tens of millions of hosts
and was used to send spam emails and distributed denial-of-
service (DoS) attacks in 2007 [11]. Therefore, botnets have
become one of top threats to the current Internet.

A botmaster uses command and control (C&C) channels
to deliver commands to all bots. Many methods have been
developed to detect such C&C channels [8], [9], [10], [13],
[21]. For example, Gu et al. explored the spatial-temporal cor-
relation and similarity among bots to detect botnet traffic [10].
Zhang and Paxson applied a timing-based algorithm to detect
stepping stones [21]. Livadas et al. used machine learning
techniques to identify IRC (Internet Relay Chat) based botnets
[13]. These methods attempt to distinguish botnet behaviors
from normal human behaviors. Future botnets, however, may
incorporate the characteristics of human beings, invalidating
or weakening the current detection systems.

In this work, we study an intelligent botnet, which is
called the delay-tolerant botnet and is named after the delay-
tolerant network [6], [7]. Delay-tolerant networks are proposed
to support applications that do not demand the immediate
transmission of packets from the source to the destination.
Similarly, many commands in botnets are indeed not required
to be simultaneously delivered to all bots, such as searching
for confidential information and sending spam emails. Even
for DoS attacks, if the botmaster can accurately predict when
a command can be received by all bots, the timing of attacks

can be set, and the command is still delay tolerant. A simple
way to introduce delays into botnets is that each bot retrieves
a command from the server with a random inter-query delay
or holds a command for random delays before forwarding it to
other bots. In this way, different bots can obtain the command
at different time instants, which is more similar to human
behaviors and is more difficult to detect.

Delivering a command to all bots is analogical to multi-
casting a packet to all receivers [17] or transmitting a file to
all peers in peer-to-peer networks [12]. For multicast or peer-
to-peer networks, an important metric is how long it takes to
deliver a packet or a file to all receivers or peers. Similarly,
in this work we study the average delay for a command to
be distributed to all bots in the delay-tolerant botnets, which
is called the botnet delay. Then, it is crucial to answer the
following question: Are delay-tolerant botnets scalable? That
is, can a delay-tolerant botnet support a large number of bots?
Generally, if the botnet delay increases linearly or exponen-
tially with the number of bots, the botnet is not scalable.
Otherwise, if the botnet delay increases logarithmically with
the number of bots, the system is scalable.

The goal of this work is to better understand the potential
threats of future botnets. Our research work makes several
contributions as follows:
• We study the botnet delay in three C&C architectures:

centralized, distributed, and hybrid delay-tolerant botnets.
Through mathematical analysis, we find that in all three
architectures, the botnet delay increases approximately
logarithmically with the number of bots. We also use sim-
ulations to verify these results. Therefore, the designed
delay-tolerant botnets are scalable.

• We discover that in centralized delay-tolerant botnets,
if a bot retrieves a command from the server with an
exponential inter-query delay with mean 1/λ, the botnet
delay is HN/λ, where N is the number of bots and
HN is the N -th harmonic number [4]. Moreover, when
considering an arbitrary distribution of the bot inter-query
delay, we can apply an exponential distribution as a
performance lower bound in delay-tolerant botnets.

• We find that in distributed delay-tolerant botnets or in the
core overlay networks of hybrid delay-tolerant botnets,
if the topology is an Erdos-Renyi random graph with an
average nodal degree of 〈k〉 and a bot delivers a command
to its neighbors with an exponential delay with mean 1/λ,
the botnet delay is ln(N)/(2λ ln(〈k〉)), where N is the



2

Bot BotBot

C&C Server

. . .

(a) Centralized

Bot

Bot

Bot

Bot Bot

(b) Distributed

Client Bot

Client Bot

Client Bot

Servent Bots

(c) Hybrid

Fig. 1. Three architectures of delay-tolerant botnets.

number of bots in a distributed delay-tolerant botnet or
servent bots in the core overlay network of a hybrid delay-
tolerant botnet.

The remainder of this paper is structured as follows. Sec-
tion II describes three architectures of delay-tolerant botnets.
Section III derives the botnet delay. Section IV further uses
simulations to verify analytical results. Finally, Section V
concludes this paper.

II. DELAY-TOLERANT BOTNET ARCHITECTURES

In this section, we provide the background on the existing
botnet C&C architectures and introduce random delays to
these systems to design delay-tolerant botnets (DTBs). In a
botnet, the botmaster has to propagate a command to all bots.
As shown in Figure 1, C&C architectures can be categorized
into three types:
• Centralized: The botmaster issues a command to a C&C

server, and all bots are connected to the server to obtain the
command, as illustrated in Figure 1(a). There are two styles of
centralized botnets: “push” and “pull” [10]. Push-style botnets
(e.g., IRC-based C&C) deliver commands from the server to
bots in the channel, whereas pull-style botnets (e.g., HTTP-
based C&C) require bots to connect back to the server for
commands. In our designed DTBs, we choose the pull style,
since the push style introduces synchronization among bots,
which is easy to detect. Specifically, we consider that a bot
connects to the server with an inter-query delay. In the existing
pull-style botnets, the inter-query delay is a fixed value and
follows a repeating and regular pattern. Instead, we design the
inter-query delay to follow a random distribution such as the
exponential distribution. In this way, a bot does not follow a
repeating and regular pattern to connect to a server. Moreover,
different bots connect to the server at different time instants,
which is more similar to human behaviors and is more difficult
to detect.
• Distributed: The botnet is constructed as an overlay

network and behaves similarly to a peer-to-peer system, as
illustrated in Figure 1(b). Once a bot receives a command,
it will forward the command to its neighbors in the overlay
network [18]. The topology of distributed botnets can be an
Erdos-Renyi random graph or a power-law topology [5]. In

our designed DTBs, if a bot receives a command, it will
hold the command for random delays before forwarding it
to its neighbors. Moreover, the bot delivers the command to
different neighbors at different time instants. Here, the delays
are random variables and follow probability distributions such
as the exponential distribution.
• Hybrid: The botnet incorporates the advantages of both

centralized and distributed botnets, and is proposed in [20].
As illustrated in Figure 1(c), some bots in the core of the
botnet, called servent bots, are constructed like the distributed
botnet. Other bots, called client bots, connect to one of servent
bots and behave similarly to the centralized botnet. Therefore,
the hybrid botnet can be regarded as a combination of the
centralized botnet and the distributed botnet, and our designed
random delays can similarly be applied to the hybrid botnet.

III. MATHEMATICAL ANALYSIS

In this section, we study the scalability of DTBs through
mathematical analysis. Specifically, we derive the average time
for a botmaster to distribute a command to all bots in a
DTB, which is called the botnet delay and denoted by E(T ).
We analyze the botnet delays in the three different DTB
architectures.

A. Centralized DTBs

For the centralized DTB as illustrated by Figure 1(a), if a
botmaster releases a command to the server at time 0, bot i
will retrieve the command at time Di. Here, D1, D2, · · · ,
DN are independent and identically distributed (i.i.d.) with
distribution function FD(·), where N is the number of bots.
Hence, the time interval for all bots to retrieve the command
is

T = max
i

Di. (1)

The distribution function of T follows

FT (t) = Pr(T ≤ t) = Pr(max
i

Di ≤ t) (2)

= Pr(D1 ≤ t,D2 ≤ t, · · · , DN ≤ t) (3)

=
N∏

i=1

Pr(Di ≤ t) (4)

= (FD(t))N
. (5)



3

If a continuous-time system is considered, the botnet delay is

E(T ) =
∫ +∞

0

tfT (t)dt =
∫ +∞

0

Pr(T > t)dt (6)

=
∫ +∞

0

[
1− (FD(t))N

]
dt. (7)

1) Exponential Distribution of the Inter-Query Delay: Ran-
dom variable D may follow different probability distributions.
If the distribution of D is assumed to be exponential with mean
1/λ, i.e.,

fD(t) =
{

λe−λt, t ≥ 0
0, t < 0,

(8)

then
FD(t) = 1− e−λt, t ≥ 0 (9)

FT (t) =
(
1− eλt

)N
, t ≥ 0. (10)

Note that Di is actually the time interval between the com-
mand arriving the server and bot i retrieving the command
from the server, which is different from the inter-query delay
of bot i. Because of the memoryless property of the exponen-
tial distribution, if bot i uses an exponential inter-query delay
for the command at the server, Di is also exponential with the
same mean. Thus, we can derive an explicit expression for the
botnet delay

E(T ) =
∫ +∞

0

[
1− (

1− e−λt
)N

]
dt (11)

=
∫ +∞

0

[
1−

N∑

i=0

(
N
i

)
(−1)ie−iλt

]
dt (12)

=
N∑

i=1

(
N
i

)
(−1)i+1

∫ +∞

0

e−iλtdt (13)

=
N∑

i=1

(
N
i

)
(−1)i+1

iλ
, (14)

where in Equation (12) we apply the binomial theorem [2].

We set Hn =
∑n

i=1

(
n
i

)
(−1)i+1

i . Then, H1 = 1, and when

n ≥ 1,

Hn+1 −Hn

=
n+1∑

i=1

(
n + 1

i

)
(−1)i+1

i
−

n∑

i=1

(
n
i

)
(−1)i+1

i
(15)

=
(−1)n+2

n + 1
+

n∑

i=1

[(
n + 1

i

)
−

(
n
i

)]
(−1)i+1

i
(16)

=
(−1)n+2

n + 1
+

n∑

i=1

(
n

i− 1

)
(−1)i+1

i
(17)

=
(−1)n+2

n + 1
+

1
n + 1

n∑

i=1

(
n + 1

i

)
(−1)i+1 (18)

=
1

n + 1

[
n+1∑

i=0

(
n + 1

i

)
(−1)i+1 + 1

]
(19)

=
1

n + 1
, (20)

where we apply the binomial theorem in the last equation.
The above derivation leads to Hn =

∑n
i=1 1/i. That is, Hn is

the n-th harmonic number [4]. Hence, we have the following
theorem.

Theorem 1: If a bot retrieves a command from the server
with an exponential inter-query delay with mean 1/λ, the
botnet delay is

E(T ) =
HN

λ
=

1
λ

N∑

i=1

1
i
. (21)

We can make two interesting observations from Theorem
1. First, the botnet delay is proportional to the mean of D
(i.e., 1/λ). Second, since HN is O(1 + ln(N)) [4], E(T ) is
O(1 + ln(N)/λ). Therefore, E(T ) increases with the rate of
ln(N) when N increases, which indicates that such a simple
randomized system is scalable.

2) General Distribution of the Inter-Query Delay: For a
general distribution of the inter-query delay (denoted by Q),
however, the command can be released to the server at any
arbitrary time, and thus D usually does not have the same
distribution as Q. To calculate the distribution of D, let FQ(t)
be the cumulative distribution function (CDF) of the bot inter-
query delay. According to the renewal theorem [15], the CDF
of D can be derived from the CDF of Q:

FD(t) =

∫ t

0
(1− FQ(x))dx∫ +∞

0
(1− FQ(x))dx

. (22)

Similar to the argument in [19], we can define the hazard
function λ(t) that denotes the intensity of queries from a bot
made at time t, given that no query from this bot is made
during [0, t). Then,

λ(t) =
d
dtFD(t)

1− FD(t)
. (23)

For an arbitrary hazard function λ(t), if λ(t) ≥ λ for all t ≥ 0
and λ > 0, then the DTB with the inter-query delay having
CDF FQ(·) would perform at least as well as the DTB with
the exponential inter-query delay with mean 1/λ.

To demonstrate this, we show an example when Q follows
a uniform distribution with mean 1/λ, i.e.,

fQ(t) =
{

λ
2 , 0 ≤ t < 2

λ
0, otherwise.

(24)

The CDFs of Q and D are

FQ(t) =
λ

2
t, 0 ≤ t <

2
λ

(25)

FD(t) =
(

1− λ

4
t

)
λt, 0 ≤ t <

2
λ

. (26)

Thus, the hazard function λ(t) can be obtained

λ(t) =
λ

1− λ
2 t

, 0 ≤ t <
2
λ

(27)

and λ(t) is undefined for t ≥ 2/λ. It is noted that λ(0) = λ
and λ(t) > λ for all t ∈ (0, 2/λ). Therefore, compared with



4

the exponential distribution with mean 1/λ for the bot inter-
query delay, the command can be delivered to all bots faster.
Indeed, from Equation (7),

E(T ) =
∫ 2/λ

0

{
1−

[(
1− λ

4
t

)
λt

]N
}

dt <
2
λ

. (28)

The upper bound of E(T ) is O(1 + 1/λ) and independent of
the number of bots.

Therefore, we can use Equations (22) and (7) to calculate
the botnet delay from an arbitrary distribution of the bot
inter-query delay. Moreover, when considering an arbitrary
distribution of the bot inter-query delay, we can apply an
exponential distribution as a performance lower bound in
DTBs, which simplifies the dynamics significantly.

B. Distributed DTBs

As illustrated by Figure 1(b), a command is released to one
bot and is then forwarded to all other bots in the distributed
DTB. Assume that bot B1 is the first bot that obtains the
command and bot BP+1 is the last bot that receives the
command. Specifically, the command is delivered from bot
B1 through bots B2, B3, · · · , BP to reach bot BP+1. Here,
P is the path length between bots B1 and BP+1. We also
assume that bot Bi (i = 1, 2, · · · , P ) holds a command for a
random delay of Di before forwarding it to bot Bi+1. Thus,
the time interval for all bots to receive the command is

T =
P∑

i=1

Di. (29)

Similar to centralized DTBs, we assume that Di’s are i.i.d.
with the exponential distribution with mean 1/λ. Then, given
the value of random variable P , T follows a gamma distribu-
tion with parameters P and λ, i.e.,

fT (t|P ) = λe−λt (λt)P−1

(P − 1)!
, t ≥ 0, (30)

which leads to the botnet delay

E(T ) =
1
λ

E(P ). (31)

It has been studied that the average path length (i.e., E(P ))
increases approximately logarithmically with N in Erdos-
Renyi random graphs and power-law topologies [1], [14]. That
is, for most botnet topologies in which we are interested [5],
E(P ) is O(1 + ln(N)). Therefore, E(T ) is O(1 + ln(N)/λ),
indicating that distributed DTBs are scalable.

Specifically, we further study DTBs with Erdos-Renyi ran-
dom graphs. According to [1],

E(P ) =
1
2

ln(N)
ln(〈k〉) , (32)

where 〈k〉 is the average nodal degree in a graph. Hence, we
have the following theorem.

Theorem 2: If a bot delivers a command to its neighbors
with an exponential delay with mean 1/λ in a distributed DTB

with an Erdos-Renyi random graph with the average nodal
degree of 〈k〉, the botnet delay is

E(T ) =
ln(N)

2λ ln(〈k〉) . (33)

Note that the above analysis assumes the spatial indepen-
dence of message delivery among different paths in a network.
It has been shown that if arrival rate λ is very small, the spatial
dependence can affect information dissemination significantly
[3]. However, if arrival rate λ is not too small, which is the
case for DTBs, we can ignore the spatial dependence to reduce
computational complexity, without losing much accuracy.

C. Hybrid DTBs

In the hybrid DTB as illustrated by Figure 1(c), a command
is first released to one of servent bots and is then forwarded to
other servent bots in the overlay network. A client bot connects
back to a servent bot for the command. Assume that there are
NS servent bots and NC client bots, where NS+NC = N . The
command is released to servent bot B1 and is delivered along
the path B2, B3, · · · , BP to reach BP+1 that is the last servent
bot receiving the command. Servent bot Bi (i = 1, 2, · · · , P )
holds a command for a random delay of DS

i before forwarding
it to servent bot Bi+1. We also assume that when servent bot
BP+1 receives the command, there are still L (0 ≤ L ≤ NC)
client bots that have not received the command from servent
bots. The set of these bots is denoted by J . Let DC

j (j ∈
J) denote the time interval between the command arriving
the client bot j’s servent bot and client bot j retrieving the
command. Then, the time interval for all bots to receive the
command is

T =
P∑

i=1

DS
i + max

j∈J
DC

j , (34)

which consists of the components from both centralized and
distributed DTBs. If DS

i ’s and DC
j ’s are i.i.d. with the expo-

nential distribution with mean 1/λ, the botnet delay is

E(T ) =
1
λ

(E(P ) + HL) . (35)

Since E(P ) is O(1 + ln(NS)) and HL is O(1 + ln(L)), E(T )
is O(1+(ln(NS)+ ln(L))/λ). If NC >> NS , i.e., the hybrid
DTBs has a relatively small core overlay network, all servent
bots will receive the command before the majority of client
bots, i.e., L ≈ NC . In this case, E(T ) is about O(1 + ln(NS ·
NC)/λ). Therefore, hybrid DTBs are still scalable in terms of
the botnet delay.

Moreover, if the core overlay network is an Erdos-Renyi
random graph, we have the following theorem.

Theorem 3: If a servent bot delivers a command to its
neighbors or a client bot retrieves a command from its servent
bot with an exponential delay with mean 1/λ in a hybrid
DTB with an Erdos-Renyi random graph as the core overlay
network, the botnet delay is

E(T ) =
1
λ

(
ln(NS)
2 ln(〈k〉) +

L∑

i=1

1
i

)
, (36)



5

0 1 2 3 4 5

x 10
4

0

50

100

150

200

250

 Number of bots

 B
ot

ne
t d

el
ay

 (
m

in
ut

es
)

 

 

 Simulation (λ=0.05)
 Analysis (λ=0.05)
 Simulation (λ=0.1)
 Analysis (λ=0.1)

Fig. 2. Average delays for distributing a command in centralized DTBs.

where 〈k〉 is the average nodal degree of the core overlay
network.

IV. SIMULATIONS AND VERIFICATION

We now examine the analytical results on DTBs through
simulations. In our simulations, a command is released to a
bot and is then delivered to all other bots in the three different
architectures of DTBs. For each scenario, we simulate 1,000
runs with different seeds. Moreover, we apply the techniques
in [16] to generate different probability distributions of inter-
query delays or forwarding delays, and follow the description
in [1] to construct Erdos-Renyi random graphs.

A. Centralized DTBs

To evaluate the scalability of centralized DTBs, we vary
the number of bots (i.e., N ) from 1,000 to 50,000. Figure 2
compares the simulation results with the analytical results in
Theorem 1 for E(T ) in centralized DTBs. Here, we assume
that the inter-query delays follow the exponential distribution
with a mean of 20 mins or 10 mins (i.e., λ = 0.05 /min or λ =
0.1 /min). Simulation results are averaged over 1,000 runs. It
can be seen that the simulation results are (almost) identical
to the analytical results, especially for large N . Therefore, this
verifies that Theorem 1 holds and demonstrates that centralized
DTBs are scalable. For example, even in a centralized DTB
with 50,000 bots, the botnet delay is less than 4 hours in the
case of λ = 0.05 /min.

Next, we study the effect of inter-query delay distribu-
tions on centralized DTBs. Specifically, we consider three
probability distributions of inter-query delays: an exponential
distribution with mean 1/λ (i.e., Equation (8)), a uniform
distribution over [0, 2/λ) (i.e., Equation (24)), and a geometric
distribution with mean 1/λ. For the geometric distribution,
Pr(Q = i) = Pr(D = i) = λ(1 − λ)i−1, i = 1, 2, · · · ,
assuming λ < 1. Following the steps in Section III-A, we
can obtain the botnet delay with the geometric distribution of
inter-query delays, i.e., E(T ) =

∑+∞
i=0 {1− [1− (1− λ)i]N}.

Figure 3 shows the botnet delays in centralized DTBs when

0 1 2 3 4 5

x 10
4

0

100

200

300

400

500

 Number of bots

 B
ot

ne
t d

el
ay

 (
m

in
ut

es
)

 

 

 Exponential (λ=0.05)
 Geometric (λ=0.05)
 Uniform (λ=0.05)
 Exponential (λ=0.1)
 Geometric (λ=0.1)
 Uniform (λ=0.1)

Fig. 3. Effect of inter-query delay distributions on centralized DTBs.

0 1 2 3

x 10
4

0

10

20

30

40

50

60

 Number of bots

 B
ot

ne
t d

el
ay

 (
m

in
ut

es
)

 

 

 Simulation (λ=0.05)
 Analysis (λ=0.05)
 Simulation (λ=0.1)
 Analysis (λ=0.1)

Fig. 4. Delays for distributing a command to all bots in distributed DTBs
with an Erdos-Renyi random graph (〈k〉 = 20).

the inter-query delays follow the exponential, uniform, or ge-
ometric distribution. Since the simulation results are identical
to the analytical results, Figure 3 only gives the simulation
results over 1,000 runs. It can be seen that when the delay
distribution is uniform, the botnet delay is always less than
2/λ. Moreover, compared with the exponential distribution,
the geometric distribution spreads the command slightly faster.
These results verify our analysis in Section III-A.

B. Distributed DTBs

We then study the scalability of distributed DTBs through
simulations. Specifically, we simulate the command delivery
over Erdos-Renyi random graphs with the average nodal
degree of 20. A bot holds a command for a random delay
that follows the geometric distribution with mean 1/λ. Figure
4 shows the simulation results when N varies from 1,000 to
38,000 and λ equals 0.05 or 0.1. The curve is the average
over 1,000 runs, whereas the error bar represents the standard
deviation. Figure 4 also shows the analytical results. Since
the geometric distribution can be regarded as the discrete-time
counterpart of the exponential distribution, the analytical result



6

10
3

10
4

0

20

40

60

80

100

120

140

 Number of bots

 B
ot

ne
t d

el
ay

 (
m

in
ut

es
)

 

 

 Simulation (N
S
/N=0.2 and extreme)

 Simulation (N
S
/N=0.05 and extreme)

 Analysis (N
S
/N=0.2)

 Analysis (N
S
/N=0.05)

 Simulation (N
S
/N=0.2 and uniform)

 Simulation (N
S
/N=0.05 and uniform)

Fig. 5. Botnet delays of hybrid DTBs (〈k〉 = 15 and λ = 0.1). Servent
bots construct an Erdos-Renyi random graph. The x-axis uses a log scale.

of Theorem 2 is applied. It can be seen that when λ = 0.1, the
analytical results almost overlap with the simulation results.
When λ = 0.05, the analytical results slightly over-estimate
the botnet delays because the spatial dependence over different
paths is ignored. The analytical results, however, characterize
the tendency of the botnet delay accurately when N varies
from small to large. That is, the simulation results verify that
distributed DTBs are scalable.

C. Hybrid DTBs

Finally, we consider the scalability of hybrid DTBs through
simulations. Specifically, we simulate NS servent bots that
construct an Erdos-Renyi random graph with the average nodal
degree of 15. A servent bot holds a command for a random
delay that follows the geometric distribution with a mean of
10 mins. A client bot has an exponential inter-query delay
with a mean of 10 mins. We consider two cases for assigning
client bots to servent bots: the uniform assignment where each
servent bot has NC/NS client bots and the extreme assignment
where all client bots are assigned to servent bot BP+1. Figure
5 shows the simulation results when N varies from 1,000 to
40,000 and NS/N equals 0.2 or 0.05. Note that the x-axis
uses a log scale. As expected, the botnet delay is larger for the
case of the extreme assignment. However, both NS/N and the
assignment scheme do not affect the botnet delay significantly.
Figure 5 also shows the analytical results by applying Theorem
3 and assuming L = NC . It can be seen that our mathematical
analysis predicts the tendency of the botnet delay accurately
when N varies from small to large. Therefore, the simulation
results verify that hybrid DTBs are scalable.

V. CONCLUSIONS

In this work, we attempt to better understand the poten-
tial threats of future botnets. Specifically, we have studied
DTBs that introduce random delays to command propagation,
making botnet behaviors more similar to human behaviors
and bots more difficult to detect. We have designed three
types of DTBs: centralized, distributed, and hybrid. Through

mathematical analysis, we have found that in all cases, the
botnet delay increases approximately logarithmically with the
number of bots. We have also used simulations to verify that
the designed DTBs are indeed scalable.

As part of our on-going work, we plan to develop effective
detection and defense mechanisms against DTBs.

REFERENCES

[1] R. Albert and A.-L. Barabasi, “Statistical mechanics of complex net-
works,” Review of Modern Physics, vol. 74, 2002, pp. 47-97.

[2] R. A. Brualdi, Introductory Combinatorics, Third Edition. Prentice Hall,
1999.

[3] Z. Chen and C. Ji, “Spatial-temporal modeling of malware propagation
in networks,” IEEE Transactions on Neural Networks: Special Issue on
Adaptive Learning Systems in Communication Networks, vol. 16, no. 5,
Sept. 2005, pp. 1291-1303.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill, 2002.

[5] D. Dagon, G. Gu, C. Lee, and W. Lee,“A taxonomy of botnet structures,”
in Proc. of the 23 Annual Computer Security Applications Conference
(ACSAC’07), Miami Beach, FL, Dec. 2007.

[6] K. Fall, “A delay tolerant networking architecture for challenged In-
ternets,” in Proc. of Special Interest Group on Data Communication
(SIGCOMM’03), Karlsruhe, Germany, Aug. 2003.

[7] S. Farrell and V. Cahill, Delay and Disruption Tolerant Networking.
ISBN 1-59693-063-2, Artech House, 2006.

[8] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering analysis
of network traffic for protocol- and structure-independent botnet detec-
tion,” in Proc. of the 17th USENIX Security Symposium (Security’08),
San Jose, CA, July 2008.

[9] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotHunter:
Detecting malware infection through IDS-driven dialog correlation,” in
Proc. of the 16th USENIX Security Symposium (Security’07), Boston,
MA, Aug. 2007.

[10] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting botnet command
and control channels in network traffic,” in Proc. of the 15th Annual
Network and Distributed System Security Symposium (NDSS’08), San
Diego, CA, Feb. 2008.

[11] T. Holz, M. Steiner, F. Dahl, E. W. Biersack, and F. Freiling, “Mea-
surements and mitigation of peer-to-peer-based botnets: A case study
on storm worm,” in First Usenix Workshop on Large-scale Exploits and
Emergent Threats (LEET’08), San Francisco, CA, Apr. 2008.

[12] R. Kumar and K.W. Ross, “Peer assisted file distribution: The minimum
distribution time,” IEEE Workshop on Hot Topics in Web Systems and
Technologies (HOTWEB’06), Boston, MA, Nov. 2006.

[13] C. Livadas, B. Walsh, D. Lapsley, and T. Strayer, “Using machine
learning techniques to identify botnet traffic,” in Proc. of the Second
IEEE LCN Workshop on Network Security (WNS’06), Tampa, FL, Nov.
2006.

[14] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with
arbitrary degree distributions and their applications,” Physical Review E,
vol. 64, 026118, 2001.

[15] S. M. Ross, Introduction to Probability Models, Ninth Edition. Academic
Press, 2007.

[16] S. M. Ross, Simulation, Third Edition. Academic Press, 2002.
[17] D. Towsley, J. Kurose, and S. Pingali, “A comparison of sender-initiated

and receiver-initiated reliable multicast protocols,” IEEE Journal on
Selected Areas in Communications, Apr. 1997.

[18] R. Vogt, J. Aycock, and M. Jacobson, Jr, “Army of botnets,” in Proc.
of 14th Annual Network and Distributed System Security Symposium
(NDSS’07), San Diego, CA, Feb./Mar. 2007, pp. 111-123.

[19] M. Vojnovic and A. Ganesh, “On the race of worms, alerts, and patches,”
IEEE/ACM Transactions on Networking, vol. 16, no. 5, Oct. 2008, pp.
1066-1079.

[20] P. Wang, S. Sparks, and C. C. Zou, “An advanced hybrid peer-to-peer
botnet,”, to appear in IEEE Transactions on Dependable and Secure
Computing.

[21] Y. Zhang and V. Paxson, “Detecting stepping stones,” in Proc. of the
9th USENIX Security Symposium (Security’00), Aug. 2000.


