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In this article, we introduce worm propagation models that have been used to describe 
worm spreading dynamics using different scanning methods. We begin with random-
scanning worms that randomly select the targets in IPv4 address space, and then consider 
propagation models for worms using other scanning strategies.  
 
When the Code Red v2 worm surged in July of 2001, Stuart Staniford presented a simple 
model to explain the Random Constant Spread (or RCS) theory of the worm. Such a 
model is essentially identical to a biological epidemic model, which is widely used in 
epidemiology. For a simple epidemic model, each host has only two states: susceptible 
and infected. A susceptible host can be infected by other infectious hosts, while an 
infected host can be recovered and become susceptible. Combining infection and 
recovery provides one of the simplest models, the susceptible->infected->susceptible 
(SIS) model. 
 
Traditionally, epidemic model describes the SIS model using a nonlinear differential 
equation to measure the infected-population dynamics: 

dnnn
dt
dn

−−= )1(β , 

where n(t) is the fraction of infected hosts among all vulnerable hosts, β is the birth rate 
(the rate at which an infected host infects other susceptible hosts), and d is the death rate 
(the rate at which an infected host becomes susceptible). The solution to the above 
equation is 
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where ρ=d/β and n0=n(t=0). When the random-scanning worm propagation is concerned, 
the birth rate β becomes sN/232, where N is the total number of vulnerable hosts and s is 
the scanning rate (the number of scans that an infected host sends per unit time). 
 
Another discrete-time and continuous state deterministic approximation model, called 
Analytical Active Worm Propagation (AAWP) model, has been proposed by Chen et al. 
to model the spread of active worms that employ random scanning. A nonlinear 
difference equation is used to model the worm propagation dynamics: 
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where ni is the expected number of infected host at time step i. Such model considers the 
time that it takes a worm to infect a host.  
 
The differences between the AAWP model and the epidemic model are: 
 
(1) The epidemic model uses a continuous-time differential equation, while the AAWP 
model is based on a discrete-time model. We believe that the AAWP model is more 
accurate. Because in the AAWP model, a computer cannot infect other hosts before it is 
infected completely. But in the epidemic model, a computer begins devoting itself to 
infecting other hosts even though only a “small part” of it is infected. Therefore, the 
speed that the worm can achieve and the number of hosts that can be infected may be 
very different. 
 
(2) The epidemic model does not consider the time that it takes the worm to infect a host, 
while the AAWP model does. Different worms have different infection abilities that are 
reflected by the scanning rate (or the birth rate) and the time spent to infect a host. The 
time required to infect a host always depends on the size of the worm’s copy, the degree 
of network congestion, the distance between source and destination, and the vulnerability 
that the worm exploits. It can be shown that the time to infect a host is an important 
factor for the spread of active worms. 
 
(3) In the AAWP model, we consider the case that the worm can infect the same 
destination at the same time, while the epidemic model ignores the case. In fact, it is not 
uncommon for a vulnerable host to be hit by two (or more) scans at the same time. 
 
Both models, however, are deterministic and try to get the expected number of infected 
hosts, given the size of the initially-infected hosts, the total number of vulnerable hosts, 
the scanning rate/birth rate, and the death rate. The epidemic model can easily deduce the 
closed form, while the AAWP model predicts the spread of random-scanning worms 
more accurately. 
 
To account for the stochastic property of worm propagation, Rohloff et al. introduced a 
stochastic density-dependent Markov jump process propagation model for a random-
scanning worm drawn from the field of epidemiology. Their analysis indicates that, 
excluding the early and late growth stages of an epidemic and the “time-shifting” effects, 
simulations of a worm’s propagation using the deterministic and stochastic models are 
effectively equivalent when the number of vulnerable hosts is sufficiently large. 
Therefore, if these effects can be ignored, the possible variability of random-scanning-
worm epidemics is surprisingly minor. This finding suggests that the deterministic 
models can be applied to study the performance of worm detection and defense systems. 
 
Among these applications, Zou et al. use an epidemic model to estimate the propagation 
speed of worm epidemics at the early stage through observing traffic arriving at the 
unused IP addresses. Since a random-scanning worm randomly selects target IP 



addresses, some worm scans may hit the address space where no hosts exist. If we 
monitor on these unused IP addresses, we can detect scans from worms that employ 
random scanning. These monitored unused IP addresses are called “network telescope” or 
“Darknet”. Some “background noise”, however, may also reach Darknet, such as hostile 
reconnaissance scans, old worm scans, responses of victims of Denial of Service (DoS) 
attack, and visits of mis-configuration hosts. Thus, we need to distinguish worm scans 
traffic from other sources. Zou et al. designed a Kalman filter to estimate the infection 
speed of worms at the early stage. Such filter detects the trend of traffic, rather than the 
burst, and thus is robust to background noise. 
 
Other scanning methods, such as localized scanning, importance scanning, and sequential 
scanning, have been studied by extending the epidemic model and the AAWP model. The 
key observation is that vulnerable hosts are not uniformly distributed in the Internet, and 
thus the models are based on subnets. That is, the deterministic models are applied in 
each subnet. Different subnets are related by counting the average number of scans 
falling into each subnet. It turns out that uneven distribution of vulnerable hosts fosters 
the spread of worms using these scanning methods, comparing with random scanning. 
 
Finally, what about the worm propagation model for topological scanning? Such a 
scanning method is quite different from other scanning methods. Topological-scanning 
worms rely on the information contained in the victim host in order to locate new targets. 
The information may include routing tables, email addresses, a list of peers, and Uniform 
Resource Locations (URLs). Thus, topological-scanning worms spread analogously to 
biological viruses. Boguna et al. extended epidemic models to model topological 
scanning dynamics, taking into consideration the nodal degree distribution of the 
underlying topology. Ganesh et al. applied contact process to analyze the ease of 
topological-scanning worm propagation on different topologies. Garetto et al. analyzed e-
mail spreading in small-world topologies using a variation of the influence model, where 
the influence of neighbors is constrained to take a multilinear form. Chen et al. used a 
spatial-temporal random process to describe the statistical dependence of worm 
propagation in arbitrary topologies. 
 
In summary, modeling the spread of worms that employ different scanning methods is an 
active research area. Mathematical tools play an important role for understanding how 
worms spread and how we can detect and defend against them. 
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