
Implementation:

• The Google Speech Commands dataset [1] was 
selected for training and evaluation. To prepare 
the dataset, the 105,829 one-second audio 
recordings were transformed into 40x40 mel
spectrograms.

• Six different neural network architectures were 
implemented in Python using the TensorFlow 
machine learning library. These architectures 
included feedforward fully-connected neural 
network (FFCN), depthwise separable 
convolutional neural network (DS-CNN) [2], 
ResNet [3], DenseNet [4], Inception [5], and 
CENet [6]. 

• Each network was adapted from its original paper 
to accept a 40x40 mel spectrogram as input and 
classify it as one of 35 keywords.

Training:

A total of 70 unique neural network models of 
different architectures and sizes were trained for 100 
epochs.

Evaluation:

Post-training quantization was applied to each 
model, creating a version where the weights and 
operations used 8-bit signed integers instead of 32-
bit floating-point numbers. Both model versions 
were evaluated for size and accuracy. The 
TensorFlow Lite benchmark tool was also used to 
measure the models’ memory consumption and 
inference latency.

Deployment:

After evaluation, one of the DS-CNN models was 
deployed on an Arduino Nano 33 BLE and on a 
Digilent Nexys4 FPGA using CFU Playground.
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Methodology

In conclusion, six different neural network architectures were implemented in Python using TensorFlow. For 
each architecture, models were trained and evaluated in terms of accuracy, memory consumption, inference 
latency, and size. Additionally, the smallest DS-CNN model was converted to a byte array and run on an 
Arduino 33 BLE. An FPGA custom function unit was also generated using CFU Playground.

This research serves as a guide to hardware/software co-design techniques for implementing efficient on-
device keyword spotting on resource-constrained systems. This work can be extended to evaluate neural 
network architectures for other edge device applications such as visual wake word detection and anomaly 
detection. 

Digital assistants like Amazon Alexa, Apple Siri, 
Google Assistant, and Microsoft Cortana have 
enabled a novel method of interacting with 
electronic devices. Using automatic speech 
recognition, digital assistants enable users to 
operate devices simply by speaking commands. 
Since 2012, artificial neural networks have 
substantially improved automatic speech 
recognition. However, neural networks do not allow 
large, complex natural language processing models 
to run on resource-constrained embedded systems 
like smart speakers and smartphones. Instead, 
digital assistants perform keyword spotting, where 
the neural network is only trained to recognize a 
relatively small set of words. 

Even with the reduced scope of keyword spotting 
compared to natural language processing, designing 
a neural network to run on edge devices with the 
performance of commercial digital assistants is not 
trivial. Companies like Amazon, Apple, Google, and 
Microsoft employ teams of dedicated developers to 
design and train their neural networks. However, 
creating an effective custom neural network 
architecture is prohibitive for almost everyone else. 

The goal of this research project is to explore how 
the resource constraints of embedded systems 
affect the performance of existing neural network 
architectures that have been adapted to perform
keyword spotting.

Conclusion

Evaluation:

Accuracy
Every unquantized model (except for FFCN models) 
above 50kB performed similarly, reaching 
approximately 90% accuracy. However, performance 
diverged as the model size dropped below 50kB. 
Inception, CENet, ResNet, and DS-CNN models 
clustered around 75% accuracy, beating a similarly 
sized DenseNet model. Integer quantized models 
behaved differently. At model sizes above 25kB, the 
Inception architecture outperformed every other 
architecture by approximately 5% in accuracy. 
However, at model sizes below 25kB, ResNet was the 
clear frontrunner, beating the next closest model by 
about 10% in accuracy.

Memory Consumption
For non-quantized models, CENet consumed the 
most memory, followed by Inception, DenseNet, 
ResNet, FFCN, and DS-CNN. This order held for the 
quantized models except for FFCN and DS-CNN, 
whose order was flipped. 

Inference Latency
Regardless of quantization, every network remained 
below the 1ms mark. However, the quantized models 
were generally slower than their non-quantized 
counterparts. This was likely caused by the extra 
multiplication and addition operations required with 
quantization and by the CPU’s floating-point unit
(FPU) accelerating floating-point operations on the 
computer running the benchmark.
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Fig. 2. Neural Network Accuracy vs. Model Size. Models used 32-bit floating-point values for 
weights and operations (i.e., no quantization).

Fig. 3. Neural Network Accuracy vs. Mode Size. Models were converted after training to use 8-bit 
signed integers for weights and operations via post-training quantization.
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Architecture Quantization
Peak Memory (MB) Inference Latency (us)

Max Min Average Max Min Average

FFCN None 5.730 5.680 5.702 18.130 15.038 16.482

FFCN 8-bit Integer 5.094 5.023 5.062 8.663 7.264 8.116

DS-CNN None 6.129 4.996 5.674 402.205 49.570 209.870

DS-CNN 8-bit Integer 5.836 4.988 5.464 351.975 72.441 198.077

ResNet None 6.418 5.645 6.016 641.389 193.195 193.195

ResNet 8-bit Integer 6.180 5.738 5.954 486.624 239.679 239.679

DenseNet None 7.027 5.629 6.332 617.123 160.345 160.345

DenseNet 8-bit Integer 6.582 5.762 6.208 588.441 224.248 224.248

Inception None 6.961 5.910 6.450 770.405 205.215 205.215

Inception 8-bit Integer 6.742 5.750 6.341 649.030 266.512 266.512

CENet None 8.816 5.883 6.839 892.887 140.050 140.050

CENet 8-bit Integer 7.527 5.770 6.413 966.854 241.022 241.022

Table 1. Neural Network Memory and Latency Statistics. For each set of neural network models, 
the peak memory usage and average inference latency were measured. 

Fig. 1. Methodology Overview.

Deployment:

The xxd command was used to convert the smallest quantized DS-CNN model into an array of bytes which 
was then inserted into the keyword spotting example in the Arduino Harvard_TinyMLx library. An FPGA 
custom function unit (CFU) for a RISC-V soft CPU was also successfully generated using CFU Playground.
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