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Figure 2. Performance Comparison of Classification Models with and without CKKS

Figure 3. Comparison of Decrypted Test Result and Plaintext Test Result
Matched vs. Unmatched Cases

Introduction
Machine learning (ML) holds great potential for disease prediction and 
medical data classification. However, its reliance on sensitive patient 
data raises privacy concerns, further complicated by ethical guidelines 
and regulations.

Homomorphic Encryption (HE) offers a solution by allowing 
computations on encrypted data without the need for decryption, thus 
ensuring privacy throughout the processing. Unlike traditional 
encryption methods, which expose data to security risks during 
computation, HE enables secure analysis while maintaining 
confidentiality and regulatory compliance [1]. 

This research study examines the impact of the Cheon-Kim-Kim-Song 
(CKKS) HE scheme [2] on ML models, specifically Logistic Regression (LR) 
and Support Vector Machines (SVM), using the TenSEAL library [3]. By 
comparing the performance of learning on encrypted and unencrypted 
data, we evaluate trade-offs in accuracy, computational efficiency, and 
privacy, assessing the feasibility of HE for secure medical data analysis.

References & Acknowledgment 
[1] Wood, A., Najarian, K., & Kahrobaei, D. (2020). Homomorphic encryption for machine learning in medicine and 
bioinformatics. ACM Computing Surveys (CSUR), 53(4), 1-35.

[2] Cheon, J. H., Kim, A., Kim, M., & Song, Y. (2017). Homomorphic encryption for arithmetic of approximate 
numbers. In Advances in cryptology–ASIACRYPT 2017: 23rd international conference on the theory and 
applications of cryptology and information security, Hong kong, China, December 3-7, 2017, proceedings, part i 23 
(pp. 409-437). Springer International Publishing.

[3] Benaissa, A., Retiat, B., Cebere, B., & Belfedhal, A. E. (2021). Tenseal: A library for encrypted tensor operations 
using homomorphic encryption. arXiv preprint arXiv:2104.03152.

[4] Wolberg, W., Mangasarian, O., Street, N., & Street, W. (1993). Breast Cancer Wisconsin (Diagnostic) [Dataset]. 
UCI Machine Learning Repository. https://doi.org/10.24432/C5DW2B.

I would like to express my sincere gratitude to my advisor, Dr. Chao Chen, Professor in the Department of 
Electrical and Computer Engineering, for invaluable guidance, insightful feedback, and continuous support 
throughout this research.

Conclusion
This research study demonstrates the effectiveness of HE in enabling 
privacy-preserving medical data classification without significantly 
compromising predictive accuracy. By evaluating two machine learning 
models under both encrypted and unencrypted conditions, we provide a 
comprehensive analysis of how encryption impacts model performance, 
including accuracy and computational efficiency. These findings highlight 
the potential of HE as a practical and scalable solution for secure, data-
driven healthcare advancements.

In the future, this research study can be further extended to focus on 
reducing computational overhead, evaluating HE in more complex 
machine learning models, and exploring hybrid encryption techniques 
that combine HE with other privacy-preserving methods.

Methodology

Figure 4. Computation Time Comparison of Classification Models with and without 
CKKS

Figure 1. Methodology Overview

Results
The impact of CKKS HE on model performance is illustrated in Figure 2. 
Both Logistic Regression and SVM models performed well with 
unencrypted test data. However, when the test data was encrypted with 
CKKS HE, both models experienced a slight decline in performance,   
indicating sensitivity to encryption overhead. Nevertheless, the results 
remained close to the performance with unencrypted test data. 

Moreover, Figure 3 demonstrates that for both models, the majority of 
encrypted diagnostic predictions matched the unencrypted test results 
after decryption. This suggests that even with CKKS HE for privacy 
preservation, disease prediction closely aligns with the results obtained 
without encryption.

However, as shown in Figure 4, the computational time is significantly 
higher when CKKS encryption is introduced in the test data compared to 
using unencrypted test data  for testing.

We simulate the following scenario: The hospital retrieves a medical 
dataset from a database containing non-sensitive and publishable data. 
The selected dataset is then provided as plaintext to the ML service 
provider for model training. Meanwhile, privacy-sensitive current 
patient data is encrypted using CKKS HE scheme and supplied as a test 
dataset to the ML service provider, as depicted in Figure 1.

The ML service provider first trains the model on plaintext training data 
to achieve optimal learning. Since CKKS HE supports only addition and 
multiplication, the model is subsequently adjusted to process the 
encrypted test data. By using the encrypted test data without 
decryption, patient privacy is preserved. The ML service provider then 
returns encrypted predictions to the hospital, which decrypts them to 
obtain the final disease prediction results.

Implementation
The Wisconsin Diagnostic Breast Cancer (WDBC) dataset [4], comprising 569 samples, was used for binary classification to predict tumors as benign (0) 
or malignant (1) based on 30 features. The dataset was split into 90% for training (513 samples) and 10% for testing (56 samples). Logistic Regression 
and SVM machine learning models were employed, evaluated with and without CKKS. Training was conducted on unencrypted data, with 10-fold cross-
validation to ensure robustness. The CKKS scheme was chosen to handle floating-point data, and experiments were run on Google Colab+ with an A100 
GPU. Testing involved plaintext and encrypted evaluations. The trained model was adjusted to process encrypted inputs by prioritizing linear functions 
and extracting model weights and biases to ensure HE compatibility. Performance comparison included classification metrics (accuracy, precision, recall, 
F1-score), computational time differences, and decryption consistency to verify that decrypted predictions matched plaintext prediction results.
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