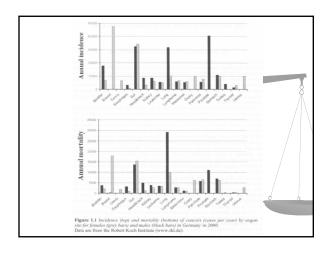
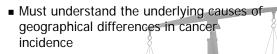
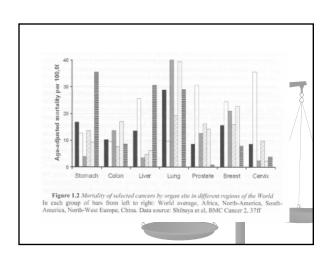
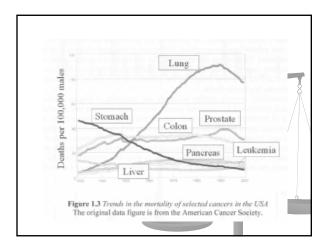
Molecular Biology of Human Cancers


Elliott J. Blumenthal
SB 390
481-6004


Introduction to Human Cancers

- There are over 200 different cancer "diseases"
- Account for over 1/5 of all deaths in Industrial Countries
- 1 out of 3 people will be treated for cancer
- As life expectancy increases the incidence of cancer will continue to rise


Definitions	Destruction	duting flee bount allows a b		
	Designation	Meaning	Remarks	
	Tumor	any abnormal increase in the size of a tissue	also used for swellings, unusual for benign hypertrophy or hyperplasia	
	Malignant tumor	a tumor characterized by permanently increased cell proliferation, progressive growth, and invasion or metastasis	corresponding to 'cancer' in everyday language	
	Benign tumor	a tumor lacking growth		
	lancenthroping for	beyond a circumscribed region within a tissue		
	Cancer	a malignant tumor	preferentially used for (suspected or verified) systemic disease	Â
	Neoplasia	a malignant tumor	and deprend abline burneresh to	
	Leukemia	a malignant tumor formed		
		by cells of the hematopoetic cells and found in the blood		
	Lymphoma	a malignant tumor formed by cells of the lymphocyte cell lineage	can be restricted to specific lymphoid organs	
	Sarcoma	a solid malignant tumor formed from connective tissue (mesenchymal) cells		
	Carcinoma	a solid malignant tumor formed from cells of epithelial origin		
	Adenoma	a benign tumor displaying a glandular structure	often originated from gland tissue	
	Adenocarcinoma	a malignant tumor showing resemblance to glandular structures	often originated from gland tissue	
	Tumor stage		different systems are in use, for different (and even the	
	Tumor grade		same) cancer types different systems are in use,	
	Tomot grade		for different systems are in use, for different (and even the same) cancer types	


 Cancers fall into 3 general categories based on incidence and mortality by organ: Epithelial cancers = carcinoma Most prevalent of carcinomas 4 most common Lung Large intestine (colon & rectum) Breast Prostate 	
 Other Carcinomas arise in the : Bladder Stomach Liver Kidney Pancreas Esophagus Cervix Ovary Skin- rarely lethal except for melanoma Each accounts for a small % of total cancers 	
 Changes in cancer rates over time: Increased smoking caused increase in lung, kidney and bladder cancers Better food quality and hygiene have lowered stomach cancers Prostate and testicular cancer have increased (due to increased longevity?) Melanoma rates have increased (aging & lifestyle?) 	

■ This can lead to increased prevention (rates of prostate cancer 20X less in Asian residents than in relatives who grew up in USA)

- Treatment protocols have done little to lessen incidence of cancers:
 - Surgery
 - Radiotherapy
 - Chemotherapy
- The QUALITY of life rather than a CURE is the ultimate goal
- So many different types of cancers there will be no one "cure" or treatment
- Understanding mechanism will lead to potential cure/treatment

Causes of Cancer

- Exogenous chemical, physical and biological carcinogens
 - Humans vary in ability to cope with each different inducer
 - Genetics
 - Stress
 - Level of exposure
- Endogenous causes
 - Chronic inflammation
 - Metabolic intermediates (O₂- intermediates)
 - DNA replication and repair

- Tumor Initiators vs Tumor Promotors vs Whole Carcinogen
 - Initiators- cause minimum of two genetic mutations
 - Promotors- are not mutagenic themselves and do not cause cancer, but stabilize mutations by inducing cell replication
 - Whole carcinogen- has both properties (can induce and promote

Table 1.	1. Types and examples of human carcinogens
Type of carcinogen	Examples
Chemical carcinogens	Nickel, cadmium, arsenic, nitrosamines, trichloro- ethylene, arylamines, benzopyrene, aflatoxins, reactive oxygen species
Physical carcinogens Biological carcinogens	UV irradiation (specifically UVB), ionizing radiation Human papilloma virus (e.g. strain 16), Epstein-Barv Virus, Hepatitis virus B, Helicobacter pylori Schistosoma mansoni
Endogenous processes	DNA replication, metabolic reactions generating reactive oxygen species, chronic inflammation

■ Chemical carcinogens

- Inorganic compounds encountered in workplace environments
 - Nickel, cadmium, arsenic
- Organic compounds
 - Nitrosamines (smoked & pickled foods) tri-chloroethylene (cleaning), aromatic compounds (benzopyrenes & arylamines) generated from burning (cigarettes, coal and fuel)
- Natural compounds
 - Aflatoxin A (mold)- liver cancer
 - Hormones
 - Medical drugs

■ Physical Carcinogens ■ Energy rich radiation ■ UVB is a skin carcinogen and effects augmented by UVA ■ Gamma irradiation (x-rays) ■ Radioactive elements ■ Radon ■ Uranium/plutonium ■ Iodine ■ Biological Carcinogens ■ Viruses ■ DNA and retroviruses (not RNA viruses) ■ HPV and HIV and EBV and Herpes and Hepatitis B ■ Bacteria ■ Rare to cause cancer (link between *Helicobacter pylori* infection and stomach cancer may be due to chronic inflammation) ■ Endogenous Carcinogens ■ Involved in cancer development through modulation of the response to exogenous carcinogens Also through strictly endogenous pathways: ■ Normal metabolism- generation of nitrosamines, aromatic amines, reactive aldehydes and reactive O₂/ species ■ Level of these dependent upon diet, exercise ■ DNA repair mechanisms- damage all the time- repair effected by age or cells removed by apoptosis- if the mechanisms affected then cancer may arise ■ Recognition by immune response (immune surveillance) ■ Chronic infection (replication of cells [liver])

Property Increased cell prolifera	tion (often as				
		rtomormous	(3		
Insufficient apoptosis	non tonen ac	itomonious	"		
Altered cell and tissue	differentiatio	n			
Altered metabolism					
Genomic instability					
Immortalization (grow	th beyond rep	licative se	enescence)		
Invasion into different	tissue layers	and other	tissues (w	ith disturbed	tissue
architecture)					
Metastasis into local ly	mph nodes a	nd distant	tissues		

Properties of Cancer Cells

- Increased and autonomous cell proliferation:
 - Unregulated growth
 - Hyperplasia- increase in cell numbers within tissue
 (prostatic hyperplasia- not cancer but may cause same problems- has increased PSA levels)
 - Dysplasia- pre-neoplastic alteration that involves increased proliferation and altered morphology
 - Hyperproliferation caused by:
 - Altered response to growth stimulatory signals (receptors?) and/or cells may become independent of these signals or to inhibitory signals
 - Benign vs malignant

■ Insufficient Apoptosis

- "programmed cell death"
 - There are "check points" in the cell cycle that if, during the cycle, they are by-passed then the cell initiates death of itself
- Altered Differentiation }
 - Cancers may exhibit cells that have markers for "mature" tissue cells, or have gradiations from embryonic markers to fully differentiated adult markers- generally the more malignant, the more undifferentiated (immature) the cells are
 - CEA (colon), AFP (liver)
 - Antigens that are not ever found in that specific tissue type
 - May be used to identify site of origin of tumor

■ Altered Metabolism ■ Cell growth requires nutrients and energy and the cancer cells get this from the body. As tumor mass increases these requirements also increase ■ Tumors release enzymes and hormones that act on the host ■ Tumor necrosis factor (TNF)- "cachexia" results as a general wasting, immune suppression (increased susceptibility to disease ■ FAS Ligand- binds to FAS receptors and induces apoptosis ■ Calcitonin- (lung cancer cells) causes CA++ disturbances Genomic Instability ■ Cancer cells contain multiple genetic and epigenetic alterations. ■ Polyploidy- increased DNA ■ Aneuploidy- change in number and structure of chromosomes ■ Point mutations ■ As cancers progress these instances increase ■ Results in best-adapted clone dominating growth ■ Selective survival to various treatments ■ Immortalization ■ Capable of an infinite number of cell divisions ■ Cell senescence- 60-80 doublings ■ Hematopoetic stem cells in bone marrow exception ■ Immortality maintained by: ■ Telomerase activity ■ Cancer cells can be grown in tissue culture ■ Lack contact inhibition ■ Have lower serum (FB\$) requirements

■ Invasion and Metastasis

- Invasion is criteria for differentiation between benign and malignant tumors
 - Invasion requires enzymes that degrade (allow for escape) tissues and allow for migration of single cancer cells
 - Enzymes that promote neoangiogenesis- growth of new blood vessels
- Metastasis-
 - Movement through blood or lymph
 - Biopsy mediated metastasis
 - Metastases may be directed to specific organs (melanoma → lung)

Classification of Tumors

- Staging: need to get descriptions of tumor, degree of malignancy and histological subtype
 - Extension of tumor- visual inspection (prior to surgery)- palpation, imaging (ultrasound, x-ray, computer tomography, magnetic resonance)

TNM Staging System

- T= tumor size (T1-T4)
- N= extent of invasion of lymph nodes (N0-N1 or N2)
- M= extent of metastases (M0-M1 or M2)
- R= "resection margin"- after surgery necessary to know how much tumor has been removed [R0= tumor wholly contained within removed specimen]

Grading

- Degree of malignancy is graded
 - Score the degree of cellular and nuclear atypia (degree of tissue disorganization in tumor sections, biopsy or single tumor cells)
 - G0= normal differentiation, no atypia (benign tumor)
 - G1-G3= well differentiated to poorly differentiated (look at morphology, staining for specific markers and look at extent of proliferation)
 - G4= cellular morphology completely different from normal tissue cells and pronounced atypia of cells and nuclei

Treatment of Cancer

- Surgery- for localized cancer
- Irradiation- for localized cancer and fast growing cancers
- Drugs-
 - leukemia, lymphoma, metastatic cancers (stop DNA replication, transcription, replication)- how to target just tumor cells???
 - Receptor targeting
 - Hormone and anti-hormone therapy
 - Stimulation of immune response (CSF's & IL's)
- Combination Therapy
 - Adjuvant Therapy- surgery followed by Chemo-
 - Neo-Adjuvant Therapy- chemo- prior to surgery to shrink tumor